# 江苏隆昌化工有限公司 土壤和地下水自行监测报告

委托单位: 井、江苏隆昌化工有限公司

编制单位:

江苏恒安检测技术有限公司

2025年9月

## 江苏隆昌化工有限公司 土壤和地下水自行监测报告

委托单位: 江苏隆昌化工有限公司

编制单位: 江苏恒安检测技术有限公司

## 目录

| 1 | 工作背景                    | 1  |
|---|-------------------------|----|
|   | 1.1 工作由来                | 1  |
|   | 1.2 工作依据                | 1  |
|   | 1.3 工作内容及技术路线           | 3  |
| 2 | 企业概况                    | 6  |
|   | 2.1 企业基本信息              | 6  |
|   | 2.3 企业历史用地情况            | 7  |
|   | 2.3 企业已有监测信息            | 12 |
| 3 | 地勘资料                    | 12 |
|   | 3.1 地质信息                | 12 |
|   | 3.2 水文地质信息              | 14 |
| 4 | 企业生产及污染防治情况             | 15 |
|   | 4.1 企业生产概况              | 15 |
|   | 4.2 企业总平面布置             | 39 |
|   | 4.3 各重点场所、重点设施设备情况      | 42 |
| 5 | 重点监测单元识别与分类             | 45 |
|   | 5.1 重点单元情况              | 45 |
|   | 5.2 识别/分类结果及原因          | 47 |
|   | 5.3 关注污染物               | 48 |
| 6 | 监测点位布设方案                | 51 |
|   | 6.1 重点单元及相应监测点/监测井的布设位置 | 51 |

| 6.2 各点位布设原因      | 54    |
|------------------|-------|
| 6.3 各点位监测指标及选取原因 | 56    |
| 7样品采集、保存、流转与制备   | 58    |
| 7.1 现场采样位置、数量和深度 | 58    |
| 7.2 采样方法及程序      | 60    |
| 7.3 采样保存、流转与制备   | 61    |
| 8 监测结果及分析        | 65    |
| 8.1 土壤监测结果分析     | 65    |
| 8.2 地下水监测结果分析    | 73    |
| 9 质量保证与质量控制      | 100   |
| 9.1 现场采样过程       | 101   |
| 9.2 运输及流转过程      | .101  |
| 9.3 实验室检测分析过程    | . 101 |
| 10 结论与措施         | 103   |
| 10.1 结论          | 103   |
| 10.2 措施          | 103   |
| 附件: 检测报告         |       |

## 1 工作背景

## 1.1 工作由来

为贯彻《中华人民共和国土壤污染防治法》、《工矿用地土壤环境管理办法(试行)》(生态环境部令第3号)、《关于加强土壤污染重点监管单位土壤环境管理工作的通知》(通环土[2020]7号)有关要求,落实企业污染防治主体责任,江苏隆昌化工有限公司委托江苏恒安检测技术有限公司按照《工业企业土壤和地下水自行监测技术指南》(HJ1209-2021)相关要求并结合公司生产实际情况编制土壤和地下水自行监测方案,现已根据方案进行了土壤和地下水的现场采样以及实验室样品分析工作,在此基础上编制了本报告。

## 1.2 工作依据

## 1.2.1 国家相关法律法规和政策

- (1)《中华人民共和国环境保护法》(2015年1月1日);
- (2)《中华人民共和国土壤污染防治法》(2019年1月1日)
- (3)《中华人民共和国土地管理法》(2004年8月28日);
- (4)《中华人民共和国固体废物污染环境防治法》(2016年11月7日第三次修订);
- (5)《土壤环境保护和污染治理行动计划》(2016年5月28日);
  - (6) 《土壤污染防治行动计划》(国发[2016]31号);
  - (7)《关于加强土壤污染防治工作的意见》(环发[2008]48号);
- (8)《江苏省政府关于印发江苏省土壤污染防治工作方案的通知》(苏政发[2016]169号);
- (9) 工矿用地土壤环境管理办法(试行)(生态环境部令第3号)。

## 1.2.2 相关导则和规范

- (1) 《工业企业土壤和地下水自行监测技术指南》 (HJ1209-2021);
  - (2) 《排污单位自行监测技术指南 总则》(HJ819-2018);
  - (3)《环境影响评价技术导则 土壤环境(试行)》(HJ 964-2018);
  - (4)《建设用地土壤污染状况调查技术导则》(HJ 25.1-2019);
- (5)《建设用地土壤污染风险管控和修复监测技术导则》(HJ 25.2-2019):
  - (6)《建设用地土壤污染风险评估技术导则》(HJ25.3-2019);
  - (7) 《建设用地土壤污染风险管控和修复术语》(HJ682-2019);
  - (8)《土壤环境质量 建设用地土壤污染风险管控标准(试行)》 (GB 36600-2018);
  - (9)《土壤环境质量 农用地土壤污染风险管控标准》 (GB15618-2018);
    - (10) 《地下水质量标准》(GBT 14848-2017);
    - (11) 《土壤环境监测技术规范》(HJ/T166-2004);
    - (12) 《地下水环境监测技术规范》 (HJ164-2020);
- (13) 《地块土壤和地下水挥发性有机物采样技术导则》(HJ 1019-2019);
  - (14)《建筑工程地质勘探与取样技术规程》(JGJ/T87-2012);
  - (15)《重点行业企业用地调查疑似污染地块布点技术规定》;
  - (16)《重点行业企业用地调查样品采集保存和流转技术规定》。

## 1.2.3 其他相关资料

(1) 企业提供的相关资料。

## 1.3 工作内容及技术路线

## 1.3.1 工作内容

在企业用地环境调查过程中,严格执行我国现有的污染场地管理法律法规。遵照《工业企业土壤和地下水自行监测技术指南》(HJ1209-2021)、《建设用地土壤污染状况调查技术导则》(HJ25.1-2019)、《建设用地土壤污染风险管控和修复监测技术导则》(HJ25.2-2019)等要求开展调查工作,将以《土壤环境质量建设用地土壤污染风险管控标准(试行)》(GB36600-2018)、《地下水质量标准》(GB/T14848-2017)等相关标准为评价依据,组织实施本次场地环境调查工作。

调查方法:在资料收集、现场探勘和人员访谈的基础上,合理布设调查点位对场地进行环境调查取样分析,判断场地是否受到污染、污染类型及程度,为企业下一步决策提供依据。

## 1.3.2 技术路线

此次工作技术路线主要包括资料分析、污染源识别和污染分析、 点位布设和检测项目确定、现场采样检测分析、自行监测报告编制七 个方面,具体内容如下:

## (1) 资料收集

收集江苏隆昌化工有限公司企业基本信息,核实地块内及周边区域环境与污染信息,优先保证基本资料齐全,尽量收集辅助资料。对于缺失的资料,通过信息检索、部门走访、电话咨询、现场及周边区域走访等方式进行收集。

## (2) 现场踏勘

现场踏勘的目的一是完善信息收集工作,二是通过对场地及其周

边环境设施进行现场调查,观察场地污染痕迹,核实资料收集的准确性,获取与场地污染有关的线索。调查组采用专业调查表格、GPS 定位仪、摄/录像设备等手段,仔细观察、辨别、记录场地及其周边重要环境状况及其疑似污染痕迹,识别和判断江苏隆昌化工有限公司地块污染状况。

## (3) 人员访谈

对江苏隆昌化工有限公司用地知情人员采取咨询、发放调查表等形式进行访谈,访谈人员包括场地管理机构、场地的使用者、相邻场地的工作人员和居民等。

## (4) 污染源识别和污染分析

调查组对资料收集、现场踏勘和人员访谈获取的相关资料信息进行汇总、整理和分析,了解江苏隆昌化工有限公司历史变革、原辅材料及产品、生产工艺生产设施布局、周围污染源对本场地影响等,重点关注污染物排放点及污染防治设施区域,包括生产废水排放点、废水收集和处理系统、固体废物堆放区域等,对企业产污环节进行分析,从而确定重点单元,并对其进行分类。

## (5) 点位布设和检测项目确定

调查组根据企业用地污染源识别分析后,确定土壤和地下水采样点位及检测项目;并通过资料分析结合人员访谈与现场踏勘结果,确定监测点位。

## (6) 现场采样检测分析

根据方案联系检测公司准备采样设备、仪器和材料等,对土壤和 地下水采样点进行测量放线布点,选取合适的钻探设备进行土壤钻孔 取样和地下水监测井监测,采集土壤和地下水样品,做好相关拍摄和 文件记录工作。对采集的环境样品进行实验室检测。

## (7) 自行监测报告编制

了解场地的基本情况,识别出相应的污染源,分析企业在历史生 产过程中可能产生的土壤和地下水污染情况,评估实验室检测数据, 分析检测数据,编制土壤和地下水自行监测报告。

本次土壤和地下水自行监测的工作程序见图 1.3-1。

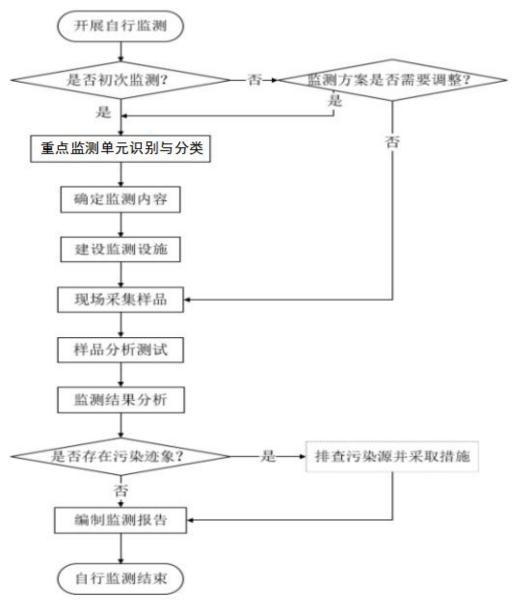



图 1.3-1 工业企业土壤和地下水自行监测的工作程序

## 2 企业概况

## 2.1 企业基本信息

江苏隆昌化工有限公司建于 1999 年,2005 年移址扩建到如皋港化工新材料产业园区,主要从事固废氯化苯焦油(混合二氯苯)的资源化回收处理。从固废氯化苯焦油(混合二氯苯)中提取可利用的氯化苯、对二氯苯、邻二氯苯、间二氯苯,并以其中的二氯苯类为原料生产 2,5-二氯硝基苯、邻硝基对氯苯胺、3,4-二氯硝基苯、2,4二氯苯乙酮、水化氯铝酸钙等产品。公司现处理固废氯化苯焦油(混合二氯苯)能力 15000t/a,实现节能减排、资源综合利用。公司占地面积 27272.4m²,现有员工 139 人。作业制度:全年工作日 300 天,生产岗位采取"三班二运转"工作制。企业基本情况表见表 2.1-1。

表 2.1-1 企业基本情况表

| <b>农工工工业业工工工工工工工工工工工工工工工工工工工工工工工工工工工工工工工工</b> |                                                          |                |                                                                      |  |  |
|-----------------------------------------------|----------------------------------------------------------|----------------|----------------------------------------------------------------------|--|--|
| 单位名称                                          | 江苏隆昌化工有限公司                                               |                |                                                                      |  |  |
| 单位地址                                          | 如皋市如皋港化工新材料产业园                                           | 所在区            | 南通市如皋港区                                                              |  |  |
| 企业性质                                          | 有限公司                                                     | 所属工业园区<br>/集聚区 | 化工新材料产业园区                                                            |  |  |
| 法人代表                                          | 佘道才                                                      | 邮政编码           | 226532                                                               |  |  |
| 组织机构代码                                        | 913206827168772976                                       | 职工人数           | 139                                                                  |  |  |
| 联系电话                                          | 15706271352                                              | 占地面积           | 27272.4m <sup>2</sup>                                                |  |  |
| 企业规模                                          | 小型<br>混合二氯苯、邻二氯苯、对二氯<br>苯、浓硝酸、浓硫酸、液氨、乙<br>酰氯、三氯化铝等       | 所属行业           | [C2614]有机化工原料制造; [N7724]危险废物治理; [C3099]其他非金属矿物制品制造; [C3033]防水建筑材料制造; |  |  |
| 主要产品                                          | 氯苯、对二氯苯、邻二氯苯、间二氯苯、3,4-二氯硝基苯、邻硝基对氯苯胺、2,4-二氯苯乙酮、2,5-二氯硝基苯等 | 经度坐标           | 120°31'8.53"                                                         |  |  |
| 联系人                                           | 崔伟伟                                                      | 纬度坐标           | 32°52'3.27"                                                          |  |  |
| 联系电话                                          | 15706271352                                              | 历史事故           | 无                                                                    |  |  |

## 2.3 企业历史用地情况

江苏隆昌化工有限公司地块原先为荒地,2005 后企业年开始进入该地块从事生产活动。地块历史卫星影像(仅2009年以后),见图 2.3-1。



2009.2



2012.5



2013.8



2015.12



2016.12



2018.1



2019.1



2020.3



2021.2



2021.10

图 2.3-1 企业用地变革卫星影像图

11

## 2.3 企业已有监测信息

江苏隆昌化工有限公司于 2018 年开始,每年一次对土壤和地下水开展土壤和地下水自行监测工作,土壤监测项目为《土壤环境质量建设用地土壤污染风险管控标准(试行)(GB 36600-2018)表 1 中 45 项,地下水监测项目为《地下水质量标准》(GB/T 14848-2017)表 1 中 37 项以及表 2 中的氯苯、邻二氯苯、对二氯苯、三氯苯。

根据 2024 年 8 月土壤和地下水自行监测报告可知,地块内所有土壤样品检测结果均符合《土壤环境质量 建设用地土壤污染风险管控标准(试行)(GB36600-2018)表 1 以及《建设用地土壤污染风险筛选值和管制值》(DB4403/T 67-2020)表 2 中第二类用地的筛选值。

所有地下水样品(含对照点)检测指标分析结果均符合《地下水质量标准》(GB/T 14848-2017) IV 类标准,以及《上海市建设用地地下水污染风险管控筛选值补充指标》中第二类用地筛选值。

综上所述,本次自行监测分析结果表明江苏隆昌化工有限公司地 块内土壤和地下水质量处于良好状态。

## 3 地勘资料

## 3.1 地质信息

通过参考《南通诚晖石油化工有限公司四期-综合楼岩土工程详细勘察报告》(2012)(位于江苏隆昌化工有限公司地块西南方向约1千米处,引用地勘与本地调查地理位置见图 3.1-1)可知该区域的土壤和地下水情况如下。

**场地土层分布:**本次勘察揭示(最大勘探深度)30.00m以浅各土层由第四纪全新世至中更新世以来的长江下游冲积平原沉积物組组成,呈水平状分布,按其成因及土的物理力学性质,可分为5个工程

地质层,各士层分布规律及工程性质,自上而下描述如下:

- ①冲填土:灰褐色、灰色,松散,主要成分为粉砂,局部夹少量植物根茎,层底标高 0.7~2.43m,层 0.60~1.70m。该层场区普遍分布,压缩性不均,强度低,工程特性差。
- ②淤泥质粉质粘土: 深灰色,流塑,含有机质,具淤腥臭味,无摇震反应,稍有光泽,干强度、韧性低。层底标高-9.72~-8.74m,层厚 10.20~11.50m。该层场区内普遍分布,系高压缩性,低强度土层,工程特性差。
- ③粉砂夹粉土: 青灰色,稍密~中密,饱和,局部夹层厚 15~30cm 的粉土薄层,矿物成份以石英为主、长石次之,含少量云母碎屑,级配一般。层底标高: -16.02~-14.57m,层厚 5.50~6.90m。该层场区内普遍分布,系中等缩性,中等强度土层,工程特性较好。
- ④粉土:青灰色,稍密~中密,很湿,含少量云母碎屑,摇震反应迅速,无光泽,干强度、韧性低。层底标高:-18.62~-16.86m,层厚1.20~3.20m。该层场区内普遍分布,系中等缩性,中偏低强度土层,工程特性一般。
- ⑤粉砂: 青灰色,中密,饱和,局部为粉土,矿物成份以石英为主、长石次之,含少量云母碎屑,级配差。该层未揭穿,最大揭示层厚为10.80m。系中等压缩性,中等强度土层,工程特性较好。

场地地下水:经钻探揭露,拟建场地(最大勘探深度)30.00m 以浅地下水主要为孔隙潜水。场区备士层间水力联系密切,故视为同一含水层,富水性及透水性由上往下渐好,其主要补给来源为大气降 水入渗和地表水的部分侧向流补给,以地面蒸发及民井抽取为主要排 泄方式,受季节响明。如皋市(长江镇)最高历史水位标高在1.90m, 年变幅在1.30m 左右。勘探期间测得场地内初见地下水位标高为 1.08~1.36m(埋深 1.10~1.90m),平均初见水位标高 1.22m(埋深 1.50m),稳定地下水位标高为 1.28~1.56m(埋深 0.90~1.70m),平均稳定水位标高 1.42m(埋深 1.30m)。

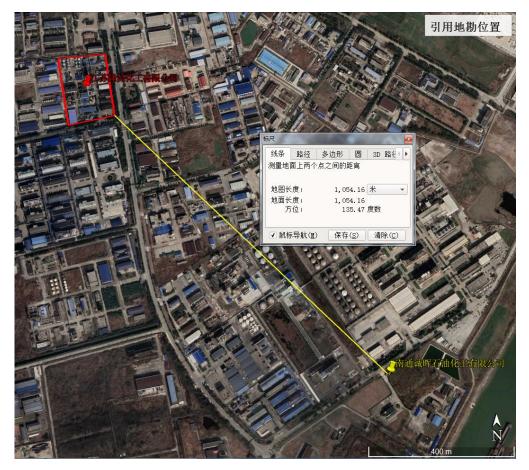



图 3.1-1 调查地块与引用地勘位置关系图

## 3.2 水文地质信息

江苏隆昌化工有限公司地处长江三角洲北翼,北纬32°00′~32°30′、东经120°20′~120°50′,南临长江与张家港市隔江相望,北与海安市、东与如东县、东南与南通市通州区毗邻西与泰兴市、西南与靖江市接壤。全市总面积1477平方公里(不含长江水面),人口142.26万人(2012年);其中市区面积80平方公里,港区城市面积30平方公里。

该区域属于长江三角洲海相,河相沉积的沙嘴沙洲沉积平原部分,成土母质以江淮冲积物为主体,属扬子地层第一分层部分区。境

内地势平坦,地面平均海拔 2~6 米 (废黄河口基面),地貌分区为南通市五个地貌分区中的北岸古沙咀区。本地区地震频度低,强度弱,地震烈度在 6 度以下,为浅原构造地震。所在地的地质构造属中国东部新华夏第一沉降带,地势平坦开阔,地下水对砼无侵蚀作用。地貌分区为长江三角洲平原的启海平原,地势开阔平坦。

该区域河网稠密、湖荡众多的长江三角洲。河网密度每平方千米高达4千米以上。全市水乡介于长江和淮河两大水系之间。以长江北岸沙堤为界,南部属长江水系,北部属淮河水系。50年代以前,境内水系紊乱,沟河断残灌排困难。建国后,大兴水利,在沿江地区加固长江大堤,疏浚通江水道,挖港建闸,保证了沿江低平原的引排畅通;在高沙平原区,结合平整土地,挖河建站,保证了该地区的农田灌溉;在东北部滨海平原区,开挖河渠,形成了一套防洪、干旱,盐渍的水利系统。

## 4 企业生产及污染防治情况

## 4.1 企业生产概况

江苏隆昌化工有限公司于 2005 年进入该地块从事化工新材料的 生产及深加工。

公司一期迁址扩建项目,于 2007 年 2 月获得了南通市环保局的 批复(通管环[2007]15 号),于 2008 年 12 月通过南通市环境保护局 环保竣工验收。

二期年产 15000 吨固废氯化苯焦油(混合二氯苯)资源化处理技改扩建项目,于 2011 年 1 月 25 日获得南通市环境保护局批复(通环

管[2011]016号),其中混合二氯苯分离项目于2011年8月22日通过南通市环境保护局环保竣工验收(通环验[2011]0100号)。二期项目其余部分于2014年9月22日通过南通市环境保护局环保竣工验收(通环验[2014]0080号)。

公司于 2018 年 12 月获得《新建 1000t/a 新型防水材料项目环境 影响报告表》的批复(皋行审环表复[2018]294 号),于 2020 年 3 月 获得《新建重金属污染土壤稳定固定化修复技术的研发与产业化项目 环境影响报告表》的批复(皋行审环表复[2020]34 号)。

公司项目建设情况具体见表 4.1-1。

表 4.1-1 公司项目建设情况表

| 序号 | 项目名称                                            | 建设内容                                                                                                                                               | 环评批复情况                                    | 验收情况                                                          | <br>备注   |
|----|-------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|---------------------------------------------------------------|----------|
|    | 如皋市隆昌化工有限<br>公司移址扩建项目                           | 二氯苯分离线(处理混合<br>二氯苯的能力 2100t/a)                                                                                                                     | 通环管<br>[2007]15 号                         | 一期搬迁项<br>目及 2,5-二<br>氯硝基苯,已<br>验收 2008 年<br>12 月              |          |
| 1  |                                                 | 2,5-二氯硝基苯生产线<br>(1200t/a)                                                                                                                          |                                           |                                                               | 正常<br>生产 |
|    |                                                 | 邻硝基对氯苯胺生产线<br>(1000t/a)                                                                                                                            |                                           |                                                               |          |
| 序号 | 项目名称                                            | 建设内容                                                                                                                                               | 环评批复情况                                    | 验收情况                                                          | 备注       |
| 2  | 15000 吨/年固废氯化<br>苯焦油 (混合二氯苯)<br>资源化处理技改扩建<br>项目 | 混合二氯苯分离生产线<br>(氯化苯焦油处理能力增加为 15000t/a)<br>原未生产的邻硝基对氯<br>苯胺生产线扩建后将投入生产,并将产能扩大到<br>2000t/a<br>增加 2,4-二氯苯乙酮<br>(1000t/a)及 3,4-二氯硝基苯生产线(1000t/a)各<br>1条 | 通环管<br>[2011]016 号;<br>通环管函<br>[2014]11 号 | 混合二氯苯项目,通环验<br>[2011]0100<br>号;其余项目<br>通环验<br>[2014]0080<br>号 | 正常生产     |
| 3  | 新建 1000t/a 新型防水<br>材料项目                         | 新型防水材料 1000t/a                                                                                                                                     | 皋行审环表复<br>[2018]294 号                     | 已验收                                                           | 正常<br>生产 |
| 4  | 新建重金属污染土壤<br>稳定固定化修复技术<br>的研发与产业化项目             | 重金属污染土壤修复剂<br>5000t/a                                                                                                                              | 皋行审环表复<br>[2020]34 号                      | 正在建设                                                          | -        |

4.1.1 生产产品

## 公司产品方案见表 4.1-2。

表 4.1-2 现有项目产品方案

| 车间名称   | 工程名称             | 产品名称          | 状态 | 设计能<br>力(t/a) | 年运行时<br>数(h) |
|--------|------------------|---------------|----|---------------|--------------|
|        |                  | 99.8%氯苯       | 液体 | 3000          | 7200         |
|        | <br>  混合二氯苯分离生产线 | 99.1%对二氯苯精品   | 固体 | 7210          | 7200         |
| 分离车间   | (氯化苯焦油处理能力       | 99%邻二氯苯       | 液体 | 4800          | 7200         |
|        | 15000/a)         | 90%邻二氯苯(沥青溶剂) | 液体 | 200           | 7200         |
|        |                  | 91.2%间二氯苯     | 液体 | 1524          | 7200         |
| 硝化车间   | 2,5-二氯硝基苯生产线     | 2,5-二氯硝基苯     | 固体 | 1200          | 7200         |
| 阴化干的   | 2,3              | 70%副产硫酸       | 液体 | 630.703       | 7200         |
|        | 邻硝基对氯苯胺生产线       | 邻硝基对氯苯胺       | 固体 | 2000          | 7200         |
| 胺化车间   | 和佣垄刈泉本放生厂线       | 99%氯化铵(副产)    | 固体 | 654           | 7200         |
|        | MVR 水处理车间        | 水化氯铝酸钙        | 固体 | 2445          | 7200         |
| 硝化车间   | 2.4.一复码甘苹开立经     | 3,4-二氯硝基苯     | 固体 | 1000          | 7200         |
| 阴化干的   | 3,4-二氯硝基苯生产线     | 70%副产硫酸       | 液体 | 516.446       | 7200         |
| 悪ルた向   | 1 2,4-二氯苯乙酮生产线   | 2,4-二氯苯乙酮     | 液体 | 1000          | 7200         |
| 酰化车间   |                  | 25%盐酸(副产,自用)  | 液体 | 189.07        | 7200         |
| MVR 水处 | 新型防水材料           | 新型防水材料        | 液体 | 1000          | 7200         |
| 理车间    | 土壤修复剂            | 重金属污染土壤修复剂    | 固体 | 5000          | 3200         |

## 4.1.2 原辅材料

企业生产过程涉及的主要原辅料消耗见表 4.1-3, 主要原辅材料 理化性质见表 4.1-4。

表 4.1-3 原辅料消耗情况

| 序号 | 原料               | 年耗量(t/a) | 储存方式     | 最大储存量 | 储存地点     |
|----|------------------|----------|----------|-------|----------|
| 1  | 氯化苯焦油<br>(混合二氯苯) | 15000    | 槽罐       | 1040  | 罐区 (罐组一) |
| 2  | 浓硝酸              | 793      | 储罐       | 18.8  | 罐区 (罐组三) |
| 3  | 浓硫酸              | 839      | 储罐       | 30    | 罐区 (罐组三) |
| 4  | 烧碱               | 10       | 袋装       | 12    | 1#丙类仓库   |
| 5  | 乙酰氯              | 413.26   | 200L 塑料桶 | 40    | 甲类仓库(东侧) |

| 6  | 三氯化铝(无水)  | 27.2 | 袋装 | 30  | 甲类仓库(东侧)        |
|----|-----------|------|----|-----|-----------------|
| 7  | 液氨        | 425  | 钢瓶 | 8   | 甲类仓库(西侧)        |
| 8  | 活性炭       | 20   | 袋装 | 10  | 1#丙类仓库          |
| 9  | 邻二氯苯      | 803  | 槽罐 | 780 | 罐区(罐组一二)<br>槽罐区 |
| 10 | 对二氯苯      | 3565 | 袋装 | 90  | 1#丙类仓库          |
| 12 | 2,5-二氯硝基苯 | 2200 | 袋装 | 200 | 2#丙类仓库(西)       |

## 表 4.1-4 主要原辅料理化性质

| 名称       | 分子式及<br>分子量                                          | 理化性质                                                                                                                                                        | 燃烧<br>爆炸性                                         | 毒理毒性                                                                                                                                                                                          |  |  |
|----------|------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| 对二<br>氯苯 | C <sub>6</sub> H <sub>4</sub> C <sub>12</sub><br>147 | 白色结晶有樟脑气味,不溶于水,溶于乙醇、乙醚和苯。熔点:53.1℃,沸点:173.4℃,相对密度(次=1):1.46,相对密度(空气=1):5.08,饱和蒸气压/kPa:1.33/54.80℃,临界温度/℃:407.5,燃烧热(kj·mol¹):2931.3,临界压力/MPa:4.11。            | 可燃,闪点<br>/°C: 65,爆<br>炸极限(体<br>积分数)/%:<br>无资料     | 接触限值:中国<br>MAC:未制定标准;<br>苏联 MAC:<br>20mg/m3[皮];美国<br>TWA: OSHA 75ppm,<br>451mg/m³; ACGIH<br>75ppm, 451mg/m³;<br>美国 STEL: ACGIH<br>110ppm, 661mg/m³。<br>LD <sub>50</sub> : 500mg/kg(大鼠<br>经口)。 |  |  |
| 邻二<br>氯苯 | C <sub>6</sub> H <sub>4</sub> C <sub>12</sub><br>147 | 无色易挥发的重质液体,有芳香气味,,不溶于水,溶于醇、醚等多数有机溶剂。熔点/℃:-17.5,沸点/℃:180.4,相对密度(水=1):1.30,饱和蒸气压/kPa:2.40/86℃,相对密度(空气=1):5.05,临界温度/℃:417.2,燃烧热(kj·mol⁻¹):2808.1,临界压力/MPa:4.03 | 可燃,闪点<br>/℃: 65,爆<br>炸极限 (体<br>积分数)/%:<br>2.2~9.2 | 接触限值:中国<br>MAC:未制定标准;<br>苏联 MAC;<br>20mg/m3[皮];美国<br>TWA: OSHA 50ppm,<br>301mg/m³[上限值];<br>ACGIH 50ppm[上限值];美国 STEL:未<br>制定标准。<br>毒性: LD50:<br>500mg/kg(大鼠经口)。                                |  |  |
| 间二<br>氯苯 | C <sub>6</sub> H <sub>4</sub> C <sub>12</sub><br>147 | 无色液体,有刺激性气味,不溶于水,溶于醇、醚,熔点(℃):-24.8,沸点(℃):173,相对密度(水=1):1.29,相对蒸汽密度(空气=1):5.08,饱和蒸汽压(kpa):0.13(12.1℃),燃烧热(kj·mol¹):2952.9,临界温度(℃):415.3,临界压力/MPa:4.86        | 可燃,,爆<br>炸极限(体<br>积分数)/%:<br>无资料                  | LD50: 1062 mg/kg(小<br>鼠静脉)<br>LC50: 无资料                                                                                                                                                       |  |  |

| —————<br>名称 | 分子式及<br>分子量                                | 理化性质                                                                                                                                              | 燃烧<br>爆炸性                                                           | 毒理毒性                                                                                                                                                                            |
|-------------|--------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 氯苯          | C <sub>6</sub> H <sub>5</sub> Cl<br>112.56 | 无色透明液体,具有不愉快的苦杏仁味,不溶于水,溶于乙醇、乙醚、氯仿、二硫化碳、苯等多数有机溶剂。熔点/℃:-45.2,沸点/℃:132.2,相对密度(水=1):1.10,饱和蒸气压/kPa:1.33/20℃,相对密度(空气=1):3.9,临界温度/℃:359.2,临界压力/MPa:4.52 | 闪点/℃: 28<br>第 3.3 类高<br>闪点易燃液<br>体,爆炸极<br>限(体积分<br>数)/%:<br>1.3~9.6 | 接触限值:中国<br>MAC: 50mg/m³; 苏<br>联 MAC: 500mg/m³;<br>美国 TWA: OSHA<br>75ppm, 350mg/m³;<br>ACGIH(75ppm),<br>(350mg/m³); 美国<br>STEL:未制定标准。<br>LD <sub>50</sub> : 2290mg/kg(大<br>鼠经口)。 |
| 硫酸          | H <sub>2</sub> SO <sub>4</sub><br>98.08    | 纯品为无色透明油状液体,无<br>臭,与水混溶。熔点: 10.5℃,<br>沸点:330.0℃,相对密度(水=1):<br>1.83,相对蒸汽密度(空气=1):<br>3.4,饱和蒸汽压(kPa): 0.13<br>(145.8℃)。                             | 助燃                                                                  | LD <sub>50</sub> : 2140 mg/kg(大<br>鼠经口)<br>LC <sub>50</sub> : 510mg/m <sup>3</sup> , 2<br>小时(大鼠吸入);<br>320mg/m <sup>3</sup> , 2 小时(小<br>鼠吸入)                                    |
| 硝酸          | HNO <sub>3</sub> 63.01                     | 纯品为无色透明发烟液体,有酸味,具有强腐蚀性,与水混溶,分子量: 63.01,熔点(℃): -42 (无水),沸点(℃): 86 (无水),相对密度(水=1): 1.50 (无水),相对蒸汽密度 (空气=1): 2.17,饱和蒸汽压 (KPa):4.4 (20℃)              | 能与多金属粉<br>质如电包、<br>电氢石、松<br>节点应,<br>发生爆炸<br>发生爆炸                    | LD <sub>50</sub> : 无资料<br>LC <sub>50</sub> : 无资料                                                                                                                                |
| 三氯化铝        | AlCl <sub>3</sub><br>133.35                | 白色颗粒或粉末,有强盐酸气味。工业品呈淡黄色,溶于水、醇、氯仿、四氯化碳,微溶于苯,熔点(℃): 190(253kpa),沸点(℃): 无资料,相对密度(水=1): 2.24,相对蒸汽密度(空气=1): 无资料,饱和蒸汽压(kpa): 0.13(100℃)                  | 本品不燃                                                                | LD <sub>50</sub> : 3730 mg/kg(大<br>鼠经口)<br>LC <sub>50</sub> : 无资料                                                                                                               |
| 乙酰氯         | C <sub>2</sub> H <sub>3</sub> ClO<br>78.5  | 无色发烟液体,有强烈刺激性气味,溶于丙酮、醚、乙酸,熔点(℃):-112,沸点(℃):51,相对密度(水=1):1.11,相对蒸汽密度(空气=1):无资料,饱和蒸汽压(kpa):无资料                                                      | 闪点/°C: 4,<br>本品易燃,<br>爆炸极限<br>(体积分<br>数)/%: 无<br>资料                 | LD <sub>50</sub> : 910 mg/kg(大鼠<br>经口)<br>LC <sub>50</sub> : 无资料                                                                                                                |

| 名称 | 分子式及<br>分子量                 | 理化性质                                            | 燃烧<br>爆炸性                                         | 毒理毒性                                  |
|----|-----------------------------|-------------------------------------------------|---------------------------------------------------|---------------------------------------|
| 液氨 | NH <sub>4</sub> OH<br>35.05 | 无色透明液体,有强烈的刺激性<br>臭味,相对密度(水=1):0.91,<br>易溶于水、醇。 | 易分解放出<br>氨气,温度<br>越高,分解<br>速度越快,<br>可形成爆炸<br>性气氛。 | LD <sub>50</sub> : 350mg/kg(大<br>鼠经口) |

## 4.1.3 生产工艺

## 一、混合二氯苯的分离

## 1、生产工艺原理

本项目原料来自上游生产氯化苯厂家产生的固废—混合二氯苯,该物质例入《国家危险废物名录》(2025 版),需要按危险废物经营许可要求合法转移的固废—混合二氯苯。本项目分离的主要原理:首先通过粗蒸将其中高沸点杂质去除,再利用邻、对、间三种二氯苯之间沸点的不同,控制温度通过精馏塔分离出来,最后利用熔点差异,对二氯苯容易结晶的特点,将对二氯苯通过结晶器结晶析出。本工艺不涉及化学反应过程。

## 2、生产工艺简述

## (1) 蒸馏脱杂

将混合二氯苯用机械泵连续输入 T101 脱渣塔中,控制压力-0.09MPa 的条件下使用蒸汽间接加热蒸馏,温度控制在 95~105℃,使原料中的对二氯苯、邻二氯苯、间二氯苯、氯苯从塔顶馏出,与高沸点的杂质分开,杂质储存在 V154 中进 R101A-D 蒸馏釜,继续蒸馏出部分二氯苯进入 V001 作为原料,釜残灌桶。

## (2) 干燥

除杂后的物料,通入干燥塔 R102A/B,在干燥塔纯度为≥99%的固碱填料作用下,脱去微量的水。干燥后物料进入中间槽 V009 贮存

备用。固碱定期更换,更换掉的潮湿片碱用于2,5-二氯硝基苯生产线。

#### (3) 脱轻

干燥后的物料连续进入到 T103 脱轻塔,使用蒸汽间接加热控制 塔釜温度为 98°C±5,在压力-0.09MPa 的条件下,进行连续精馏,控制回流比,塔顶物料为≥90%氯苯粗品至富氯苯槽 V512,待进入 2、4-二氯苯乙酮车间精馏组合塔提纯。塔釜液控制轻组份≤1%二氯苯进入 T104 高油塔。主要组成为邻二氯苯、对二氯苯、间二氯苯、重组分。

## (4) 高油塔

T103 脱轻塔塔釜液进入 T104 高油塔,使用蒸汽间接加热控制温度为 110±5℃,在压力-0.09MPa 的条件下进行精馏,利用对、间、邻位沸点相近、三氯苯沸点差异的特性,控制塔顶组成为二氯苯含量≥99%为富对位产品进 V204 槽,作为结晶器原料。塔釜液控制二氯苯含量≤50%进 V153 槽,作为 T109 富邻位塔进料。

富对位产品根据客户对纯度的要求通过管道或进入结晶器 E203/E204,在间接热水加热与间接冷却水冷却的交替作用下,使其中的对二氯苯结晶下来,得到纯度为≥99.9%或≥99.99%的对二氯苯纯品。液相组成主要为邻、间位及少量对位二氯苯,收集贮存在 V155A/B 作为 T105 精馏塔原料,再次循环分离提取对间、邻组份。

#### (5) T105 精馏

V154A/B 槽进入 T105 精馏塔,使用蒸汽间接加热控制温度为110±5℃,在压力-0.09MPa 的条件下进行精馏,塔顶主要为对间位馏份进入 V203 槽作为 E201A/B、E202A 结晶器原料,结晶产物粗对二氯苯进 V205 槽,待进 E203/E204 结晶器结晶;母液进 V156 槽作为T107 原料。

T105 精馏塔塔釜控制对二氯苯含量≤0.1%, 进入 T106 邻二氯苯塔。

#### (6) T106 邻位塔

T105 精馏塔塔釜料连续进入 T106 精馏塔,使用蒸汽间接加热控制塔釜温度为 120±5℃,在压力-0.095MPa 的条件下进行精馏,塔顶为含量 99.8%以上的邻二氯苯,进入 V158A/B。塔釜控制邻二氯苯含量<40%进 V153 作为 T109 原料。

#### (7) T107 低油塔

V156 槽物料进入 T107 低油塔,使用蒸汽间接加热控制塔釜温度为 105±5℃,在压力-0.09MPa 的条件下进行精馏,塔顶控制二氯苯含量≤5%取进 V511,塔釜控制二氯苯前锋小于 0.5%进入 T108 母液塔。

#### (8) T108 母液塔

T107 塔釜料连续进入 T108,使用蒸汽间接加热控制塔釜温度为 115±5℃,在压力-0.09MPa 的条件下进行精馏,塔顶控制二氯苯含量 大于 99%取进 V152,塔釜富邻二氯苯进 V155A/B。

## (9) T109 富邻二氯苯塔

V153 槽的料进 T109,使用蒸汽间接加热控制塔釜温度为 115±5℃,在压力-0.095MPa 的条件下进行精馏,塔顶控制邻二氯苯含量大于 95%取进 V001,塔釜控制邻二氯苯进 V003。

#### (10) T110 脱色塔

V011 槽对二氯苯进 T110,使用蒸汽间接加热控制塔釜温度为 115±5℃,在压力-0.095MPa 的条件下进行精馏,塔顶控制对溴氯苯含量小于 0.002%,取进 V002,塔釜料进 V205。

## (11) T501/T502 氯苯塔

V509/V511 槽的物料连续进入 T501 低氯苯塔,使用蒸汽间接加

热控制塔釜温度为 80℃,控制温度 80±5℃,在压力-0.09MPa 的条件下进行精馏。控制回流比,T501 精馏塔塔顶液分离出前馏份总含量≥40%进 V510,塔底物氯苯前馏份总含量≤0.05%,则向 T502 塔釜连续加料。

T502 加料控制加料速率与回流比,塔釜温度控制 80±5℃之间。如氯苯含量≥99.9%则取出至成品槽 V517。塔釜液氯苯含量≤10.0%则作为釜残至富二氯苯槽 V512 回 V001。

#### 3、工艺流程简图

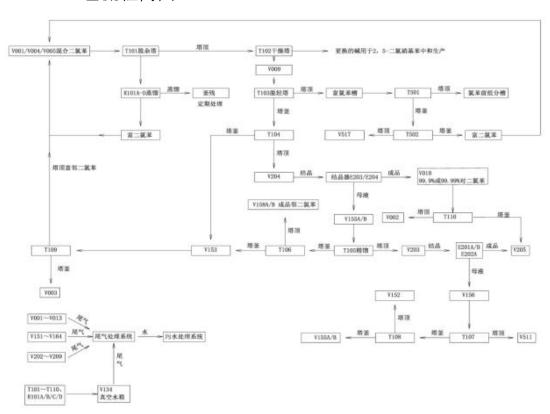



图 4.1-1 混合二氯苯分离装置生产工艺流程图

## 二、2,5-二氯硝基苯、3,4-二氯硝基苯生产工艺

## 1、工艺原理

2,5-二氯硝基苯与 3,4-二氯硝基苯两种产品为同分异构体,工艺基本相同,不同之处在于: 2,5-二氯硝基苯生产投加的原料为对二氯

苯,3,4-二氯硝基苯投加的原料为邻二氯苯;生产2,5-二氯硝基苯的对二氯苯泵入计量槽后至硝化,3,4-二氯硝基苯的邻二氯苯泵入计量槽后至硝化。两个产品同套生产装置,根据市场需要,切换生产,切换前采用硫酸清洗置换,清洗置换的硫酸回回用酸槽。此处以2,5-二氯硝基苯为代表进行描述。

工艺原理:以硫酸和硝酸的混合酸作为硝化剂,将对二氯苯进行硝化,得到目的物,然后通过分层、中和、水洗得到产品。此产品所用的原料对二氯苯为自产。

## 2、工艺流程简述

#### 1、备料

## (1) 对二氯苯

将对二氯苯泵入计量槽中,计量槽夹套通蒸汽保持原料温度在55~65℃范围之内备用,并对所有对二氯苯的进料管线、机泵、阀门等均采用蒸汽伴热,确保保温在55~65℃,计量槽尾气并入现有的二氯苯分离尾气处理系统合并处理。

#### (2) 混酸配制

将硫酸、回用酸和硝酸按配比要求分别泵入配酸釜中(采用两只配酸釜,在运行过程一用一配,切换使用),配制成混酸(泵入混酸计量罐备用,混酸组成:90%硫酸和98%硝酸质量比是3:1),配酸过程采用夹套循环冷却水降温,确保全过程中釜内混酸温度不超过50°C,配酸釜的含酸尾气排入本车间尾气处理系统处理。

#### (3) 液碱配制

分别将定量的自来水/凝结水和片碱放入碱溶釜,开启搅拌,釜 夹套通冷却水(常温)、压力(常压)下,配制液碱备用(待与水洗 分液后的水相混合为中和用碱水,液碱: 4%;碱洗 PH 值: 11-13)。

## (4) 备热水

热水罐中放入定量的自来水/凝结水,夹套通蒸汽加热至 70℃备用。

#### 2、硝化

- (1) 首次运行前确保微反应器、管式反应器、各管线均在通畅状态,所有机泵、电仪、安全系统装置均在有效可靠状态;先开启防爆模温机,终温设定为 58~62℃;再依次开启微反应器、管式反应器的冷却系统;开启尾气吸收处理系统,微反应器工艺参数:温度为60±2℃,压力为 0.8~1.2MPa;管式反应器工艺参数:温度为 60±2℃,压力为 0.02~0.06MPa。
- (2)启动混酸进料泵向微反应器、管式反应器按设定流量进料, 待管式反应器出料口有料流出后,再开启对二氯苯进料泵按设定流量 连续进料反应,反应的物料进入料酸分液槽 V301 分酸。

## 3、分酸

物料通过酸料分液槽,控制酸料分液槽中料液温度 65~70℃,槽 中物料根据比重不同自分酸管导流逐步形成分层,上层反应物料通过 流量计放入中和釜,下层副产酸通过两级冷却、过滤后放入回用酸槽, 部分回用至配酸工序,部分进入副产硫酸处理工序,滤饼去中和工序。

## 4、中和

物料进入中和釜内后开启搅拌,保持釜内物料温度 65~70℃,根据 pH 加入碱水进行中和反应,中和终点 pH 值控制在 11~13,中和的混合物溢流至中和分液槽。中和过程尾气排入本车间尾气处理系统处理。

## 5、中和分液

中和分液槽通过夹套蒸汽加热,控制中和分液槽中料液温度

65~70℃,槽中物料根据比重不同自分液管导流逐步形成分层,上层为工艺废水放至中和水罐后排至污水处理站,下层物料通过流量计放入水洗釜。

## 6、水洗

物料进入水洗釜内后开启搅拌,根据进入中和分液槽的量加入定量的热水进行水洗,水洗完成的混合物料溢流至水洗分液槽。尾气排入本车间尾气处理系统处理。

#### 7、水洗分液

水洗分液槽通过夹套蒸汽加热,控制分液槽中料液温度 65~70°C,槽中物料根据比重不同自分液管导流逐步形成分层,上层 为工艺水排至水洗水槽,并加入配制好的液碱作为中和工序的碱水回 用,下层物料放入成品中转槽。

## 8、副产硫酸处理

将部分回用酸槽中的回用酸泵入脱硝浓缩塔,控制塔釜温度 (155±3°C)、塔顶温度 (95±5°C),塔釜压力 (-0.095MPa)、塔顶压力 (-0.098MPa),对回用酸进行脱硝浓缩处理,塔顶富集含硝酸的水相,经塔顶冷凝器冷凝后去酸水槽后至污水处理站,塔釜为副产硫酸,冷却后泵入副产硫酸槽 V308 (用于外售)。

## 9、车间尾气处理

生产过程产生的尾气(包含有氮氧化物、酸性尾气等)经收集排入车间尾气处理系统,先与富氧(现有制氮系统产生的富氧)混合,随后进入三级碱喷淋塔吸收,再经除雾后排空,碱喷淋塔设置液位监测,在线 pH 检测报警并联锁补碱装置。

## 3、工艺流程简图

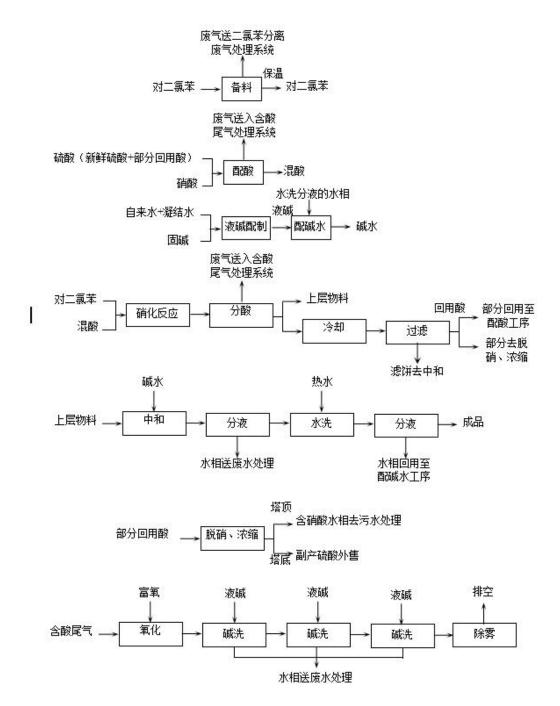



图 4.1-2 2,5-二氯硝基苯工艺流程简图

## 三、邻硝基对氯苯胺

## 1、工艺原理

对氯邻硝基苯胺生产工艺是将 2,5-二氯硝基苯与氨水进行胺化 反应,得到目的物,然后通过切片得到产品。

## 2、工艺简述

## 1、原料的准备

## (1) 备氨水

将回收的低浓氨水泵入配氨水罐(V402/V403),罐内体积控制总体积的 1/2 以下,打开配氨水罐的内循环阀门,开启充氨泵,打开配氨水罐冷却泵及配氨水罐冷凝器冷却泵,打开液氨钢瓶出口阀门,控制进液氨管线压力不超过 0.2MPa,开始配置氨水;通过调整液氨钢瓶出口阀门大小控制配氨速率,控制配氨水罐内压力不超过 0.2MPa,配氨水罐的温度不得高于 30℃,同时不间断地用比重计测量氨水的比重,直至比重达 0.873~0.877g/cm3 为止;液氨钢瓶在使用时瓶内液氨不可用尽,使用磅秤计量称重,根据每个钢瓶自重,必须要保持有至少 5kg 的液氨余量。

将配置的好的氨水打入氨水计量罐(V404)备用,氨水计量罐设置溢流管线控制液位。

## (2) 备原料 2,5-二氯硝基苯

把所需量的 1500kg 2,5-二氯硝基苯打入计量罐(V405),设置 回流管计量,有回流后停原料输送泵,罐内盘管蒸汽加热,控制物料 温度不低于 52℃,以防物料结晶。

## 2、进料

- (1)进料前,先用氮气进行置换,确保高压釜内氧含量≤1%,然后检查所有阀门。用空压氮气向高压釜(R401a/b/c/d)内加压 0.2MPa,打开出料大角阀,将釜内残留(一般为水)压出釜,以防釜 内超体积或降低氨浓。
- (2) 进 2,5-二氯硝基苯,先打开高压釜氨回收阀和气相平衡阀,通过氨化釜与高位的 2,5-二氯硝基苯计量罐 (V405) 气相平衡,通过自流的方式进料,通过计量罐液位与进料视镜判断进料结束。

(3)进氨水,打开高压釜氨计量罐平衡阀和进氨水阀,将氨水 计量罐内计量好的氨水自流进入高压釜中,通过计量罐液位与进料视 镜判断进料结束。

## 3、升温

进料结束,启动搅拌,进行升温,当温度达到 135℃时,停止蒸汽升温,升温结束后,釜内物料依靠反应放热自然升温,控制釜内压力<3.9MPa、温度<170℃。

#### 4、维持

当釜温达到 154℃、压力高于 3.0MPa 时开始计算维持,维持时间为 5 小时。通过冷却水,维持控制 154℃≤温度<170℃、3.0MPa≤压力<3.9MPa。

#### 5、氨回收

启动氨洗涤塔(T407)循环水泵及冷凝器的供水泵,氨回收塔(T408)循环水泵及冷凝器的供水泵,气液分离塔(T406)供水泵,停搅拌,打开氨回收阀门,均匀回收氨气,将釜内压力下降至 2.0MPa,当压力小于 2.0MPa 时开启高压釜搅拌继续卸压,当釜内压力降至 0.4MPa 时氨回收结束。通过洗涤塔水罐(V414)氨吸收液的检测比重,判断洗涤塔吸收液浓度,达到一定浓度取出至配氨罐(V402/V403)配氨水,补水使用氨水暂存槽(V460)内浓度<10%的氨水。通过检测回收塔水罐(V415)氨吸收液的比重,判断回收塔吸收液浓度,达到一定浓度翻入洗涤塔水罐(V414)继续用于回收氨,补水仍使用 MVR 蒸出水。

#### 6、洗涤出料

预先在水洗熔化釜(R402c/d)中加入约 2 吨 MVR 蒸出水(或自来水),启动搅拌。氨化高压釜(R401a/b/c/d)停搅拌,物料静置

分层后,通过釜内余压将下层料相压往水洗熔化釜(R402c/d)后进行升温熔化(130~140℃)、洗涤,半小时后停搅拌,物料静置分层后,通过氮气将釜内物料压往切片机(P404)进行切片,得到片状成品邻硝基对氯苯胺。

如需粉状产品则启动闪蒸机(T401)的风机(C404),开启闪蒸机(T401)底部的粉碎电机,将片状产品物料由绞龙输送至闪蒸机(T401)底部粉碎成细颗粒(根据客户的产品水分要求,选择开启热风器的蒸汽加热阀门,使出风温度保持在105~120°C,在热风的作用下脱水干燥),得到粉状成品邻硝基对氯苯胺。

氨化高压釜(R401a/b/c/d)和水洗熔化釜(R402c/d)内上层氯化铵废水和残余洗水通过氮气压料至离析釜(R402a/b)内冷却至60℃以下,排入多功能过滤机(F405),经深冷后过滤出的废水进入离析釜出水罐(V411)收集,出的废水进入离析釜出水罐(V411)收集,多功能过滤机(F405)过滤收集的为副产氯化铵。

## 3、工艺流程简图

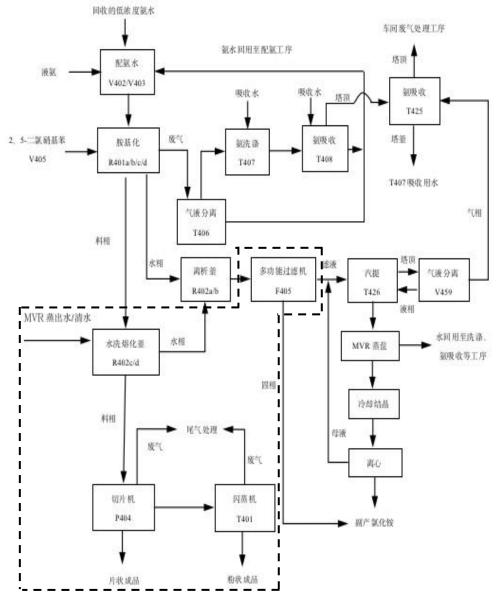



图 4.1-3 邻硝基对氯苯胺工艺流程简图

## 四、2,4-二氯苯乙酮

## 1、工艺原理

将对二氯苯在 AlCl<sub>3</sub> 作催化剂的条件下,转化为间二氯苯,然后通过精馏结晶分离除去对二氯苯及杂质,加入乙酰氯反应得到粗品,经酸解、水洗、除杂、结晶后即为成品。

## 2、工艺流程简述

## (1) 转位

将自产的对二氯苯与 AlCl<sub>3</sub>(催化剂)人工投入到转化釜中,使

用蒸汽间接加热至 160±5℃,常压下将对二氯苯转化为间二氯苯,其中 AlCl<sub>3</sub> 为催化剂,对二氯苯的转化率为 51%。

#### (2)精馏

转化完成的物料,通过泵及管道打入精馏釜,在蒸汽间接加热至100±5℃,压力-0.09MPa的条件下,将间二氯苯与对二氯苯及少量杂质分离。塔顶物经过结晶分离后进入下道工序,塔釜物去混合二氯苯分离生产线。

#### (3) 乙酰化

结晶间二氯苯进入乙酰化反应釜,加入 AICl₃ 作催化剂,常压下采用调节阀控制流量滴加乙酰氯进行乙酰化反应,反应温度控制在 30~40°C之间,滴加结束后缓慢升温到 108°C,此反应间二氯苯的转 化率为 95%左右。

反应生成的 HCl,通过反应釜的排空管直接通过三级水吸收装置,用水吸收为的稀盐酸进入酸解工序或作为副产品外售。

#### (4) 酸解

乙酰化完成的物料,通过管道缓慢滴加到酸解釜,温度控制在80°C以内,将催化剂 AlCl<sub>3</sub>及少量杂质去除,沉降分离。

## (5) 水洗

将酸解釜下层物料,通过管道用真空吸入水洗釜,并在水洗釜内加入适量自来水进行水洗,将少量 AlCl<sub>3</sub>及杂质进一步去除。

#### (6) 蒸馏/精馏

水洗得到的粗品,根据客户对产品纯度的要求的不同,分别采用蒸馏和精馏进行分离提纯。

#### ①蒸馏

进入蒸馏塔,在蒸汽间接加热至120±5℃,常压下,将大量的对

二氯苯、邻二氯苯及间二氯苯与产品分离。塔顶物去混合二氯苯分离 生产线, 塔釜的产品进入结晶器进行结晶。

#### ②精馏

进入精馏塔,在蒸汽间接加热至 150±5℃,常压下,将大量的对二氯苯、邻二氯苯及间二氯苯与产品分离。塔顶物去混合二氯苯分离生产线,塔釜的产品进入结晶器进行结晶。

#### (7) 结晶

在结晶器内加入半成品 2,4-二氯苯乙酮,用深冷水作为冷媒进行 热交换降温,物料结晶,得 2,4-二氯苯乙酮成品。

#### 3、工艺流程图

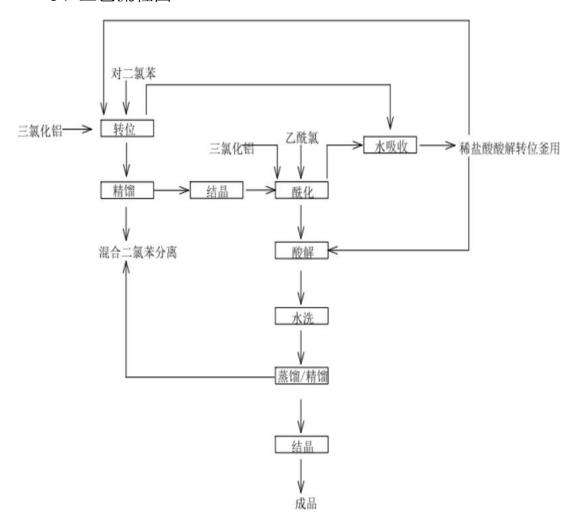



图 4.1-4 2,4-二氯苯乙酮工艺流程简图

#### 五、新型防水材料

#### 1、工艺流程简述

#### (1) 领取原料

从仓库中领取复配所需原料,分别为精馏车间自产的沥青溶剂 (90%邻二氯苯)及外购的石油沥青。

#### (2) 称重投料

按批次 500kg 的沥青溶剂从计量罐泵入混合釜,随后投入 750kg 的石油沥青。该过程产生泵噪声 N1。

#### (3) 复配

复配过程进行时,混合釜密闭且釜内保持常温常压,搅拌时间不得低于6小时以保证充分搅拌混合均匀。该过程会产生噪声 N2。

#### (4) 取样试样

过程中取样目测样品流动性,判断混合搅拌的时间,取样后的样品统一收集,回收利用,返回混合釜继续处理。取试样有专用设备取样管,无需清洗。

## (5) 分装

首先确认关闭反应釜搅拌开关,然后松开釜底总阀门,最后打开放料阀,让料流入中间桶。分装时,根据客户需求,按规格进行包装操作,误差控制在200g之内。

#### 2、工艺流程图

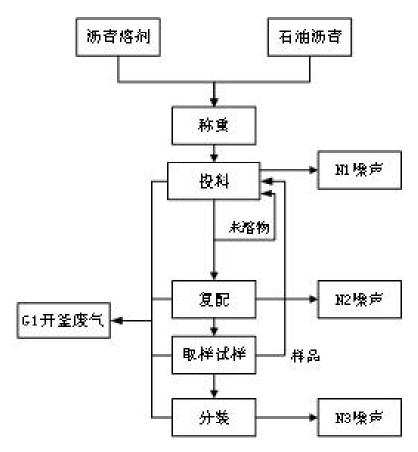



图 4.1-5 新型防水材料生产工艺流程

### 六、重金属土壤修复剂

生产中邻硝基对氯苯胺离心氯化铵水溶液进入氯化铵预处理系统,制备氯化铵和水化氯铝酸钙副产。

氯化铵成品生产主要采用 MVR 蒸发器,后续结晶、离心获得成品。实际生产中, MVR 蒸发器主要处理三类进水:氯化铵原水;氯化铵凉缩结晶母液;氯化铵原水蒸发冷凝水。除上述三类进水处,氯化铵浓缩结晶母液蒸发冷凝水通过离子交换脱氨后去离析釜使用。

#### 1、预处理工艺

(1) 氯化铵原水:来自氯化铵预处理氯化铵水溶液(包括邻硝基对氯苯胺工段树酯吸附后的氯化铵水溶液、氨尾气处理系统中第二级酸吸收液、第三级水吸收液),通过 MVR 蒸发器在 80~85℃温度下,进行减压(30~60Kpa)蒸馏,除去其中的水分,水蒸气经冷凝

氨水储存罐储存,冷凝介质为一级循环冷却水,该过程产生废气进入 氨回收系统回收利用。浓缩氯化铵母液通过结晶釜结晶,离心后得到 副产氯化铵成品,氯化铵浓缩结晶母液进入氯化铵母液收集槽。氯化 铵成品出售做混合肥,具体出售协议见附件。

- (2) 氯化铵浓缩结晶母液: 氯化铵浓缩结晶母液回到 MVR 进行减压浓缩,该过程产生进入氨回收系统利用,浓缩氯化铵母液通过结晶釜结晶,离心后得副产氯化铵成品,氯化铵浓缩母液进入氯化铵母液收集槽。蒸发冷凝水进入冷凝排入污水站处理。
- (3) 氯化铵原水蒸发冷凝水:一部份至配氨水罐配制氨水,另一部份回至 MVR 进行脱氨处理,该过程产生废气进入氨回收糸统回收利用,处理后底部水进入蒸馏水槽,作为离析用水、离心冲洗水、尾气吸收及尾气配酸用水。
  - 2、副产水化氯铝酸钙工艺
- (1) 合成配置:将外购氯化钙配制成水溶液,人孔投加生石灰, LSCA50 粉未,投加时间为 2h,夹套蒸汽加热,升温至 95-100℃, 随后反应 24h 至终点。
- (2) 压滤:将调配釜反应生成的水化氯铝酸钙压滤脱水,滤液(W6-1)进入污水处理站调节池 2,即得成品 CL-LDHs(水化氯铝酸钙),产品含水率为 10%。

根据市场需求,含氯化铵滤液可通过吸附、蒸发、结晶、离心等工艺可以回收氯化铵(654吨/年);也可通过置换、调配、离心、干燥等工艺得水化氯铝酸钙(2445吨/年);水化氯铝酸钙再与凹凸棒土复配得本项目产品土壤修复剂。

按生产配方分别称取水化氯铝酸钙、凹凸棒土等原料,依次投入到混合釜中,1.5 小时后全部原料投料完毕,常温常压下密闭均匀混

合搅拌3小时后,包装入库(3.5小时)。

#### 3、工艺流程图

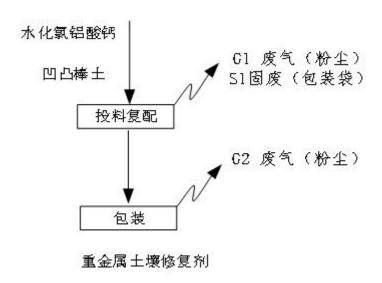
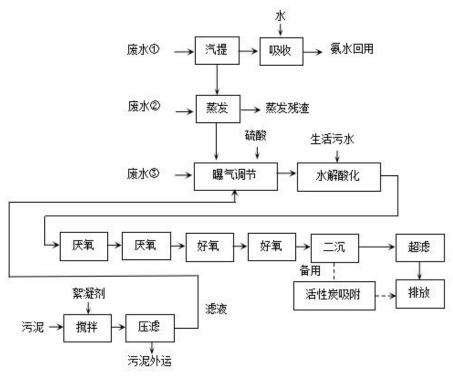




图 4.1-6 新型防水材料生产工艺流程

## 4.1.4 污染产排情况及污染物种类分析

## 4.1.4.1 废水污染物

废水主要为工艺废水、设备及地面冲洗水、初期雨水、水环泵废水、废气吸收水及生活污水等。废水采用"蒸发+沉淀+回调+水解+ 厌氧+好氧+二沉池+超滤"的工艺在厂区处理达标后,专管排入园区 污水处理厂集中处理,对周围水体无直接影响。废水处理工艺流程见 图 4.1-7。



废水①: 4-氯-2-硝基苯胺生产过程产生的废水

废水②: "4-氯-2-硝基苯胺蒸发出水"、"硝化中和水"、"真空水箱水"、"碱喷淋水"

废水③: "生活污水"、"解析水"与预处理"蒸发出水"

图 4.1-7 废水处理工艺流程图

## 4.1.4.2 废气污染物

## 有组织废气:

危废仓库产生的氯苯类通过"一级水洗+一级活性炭吸附"处理后 并入低浓度有机废气处理装置进行深度处理达标后排放;

丙类仓库产生的氨通过"一级水洗+一级酸洗+一级水洗+活性炭吸附"处理后经 FQ3-1#排气筒排放;

硝化装置产生的硫酸雾和氮氧化物通过"混氧+三级碱喷淋吸收" 处理后经 FO1-1#排气筒排放;

分离装置、酰化装置及罐区等产生的高浓度有机废气(非甲烷总烃、氯苯类)、氯化氢通过"两级碱洗+水洗+树脂吸脱附"处理,低浓度有机废气(非甲烷总烃、氯苯类)、氯化氢通过"深冷+碱洗塔+水洗塔+除雾器+活性炭吸脱附"处理后经 DA001 排气筒排放;

氨化装置产生的氨通过"一级水洗+一级酸洗+二级酸洗+一级水洗+活性炭吸附"处理后经 DA003 排气筒排放:

污水站产生的臭气通过"水洗"处理后并入低浓度有机废气处理 装置进行深度处理达标后排放;

新型防水材料生产线产生的氯苯类通过低浓度有机废气处理装置进行处理后经 DA001 排气筒排放:

重金属土壤修复剂生产线产生的颗粒物通过"布袋除尘器"处理 后经 DA003 排气筒排放。

### 无组织废气:

现有项目无组织排放废气主要为装置区未捕集的氨、硫酸雾、氯苯类、非甲烷总烃、HCl、NOx、颗粒物,罐区未捕集的氯苯类,污水处理站未捕集的氨。厂区设置 200m 卫生防护距离,卫生防护距离内没有敏感点。

## 4.1.4.3 固体废物

公司建有1座200m<sup>2</sup>的危废仓库,各类危废收集后在仓库内分类储存,固(液)体废物产生及处理情况见表4.1-5。

贮 产生 产生量 序 固废 属 形 存 处理处置 废物代码 主要成分 号 名称 性 工序 态 (t/a)周 方式 期 机械杂质、邻 精、蒸馏 固/ 生产 1 900-013-11 二氯苯、三氯 157.92 残渣 液 委托中节 苯、AlCl3等 能(连云 活性炭、苯胺 港)清洁技 废吸附介质 危 环保 古 900-405-06 类、硝基苯类、 2 6.27 术发展有 险 氯苯类、水等 限公司、南 固 固/ 废水处理 环保 900-406-06 污泥 通天地和 33.78 3 污泥 (蒸发残渣) 废 液 环保科技 生产 废机油 有机物 液 900-214-08 0.21 4 有限公司 生产 有机物、桶等 废包装桶 古 900-041-49 466只 5 等公司规 范处置 废包装材料 生产 900-041-49 6 古 编织袋、有机物 27.48 实验室废液 900-047-49 7 分析 液 有机物等 0.97

表 4.1-5 全厂固废的产生及处置情况

## 4.2 企业总平面布置

江苏隆昌化工有限公司地块内主要建筑物、构筑物工程建设情况 见表 4.2-1, 厂区平面布置具体见图 4.2-1。

表 4.2-1 主要建筑物、构筑物一览表

|    |                          |            | وـــــ 1-40 | $\sim$ | -76174       | イマチビル        | ١٠٠٠   |                 |                   |          |
|----|--------------------------|------------|-------------|--------|--------------|--------------|--------|-----------------|-------------------|----------|
| 序号 | 建(构)筑                    | 物名称        | 房屋<br>结构    | 层数     | 占地面<br>积(m²) | 建筑面<br>积(m²) | 建筑耐火等级 | 火灾危<br>险性分<br>类 | 停用与<br>变更         | 备注       |
| 1  | 1#丙类仓                    | 全库         | 钢混<br>结构    | 1      | 954.95       | 954.95       | 二级     | 丙类              | -                 | -        |
| 2  | 2.4 二氯苯                  | 七酮         | 砖混<br>结构    | 3      | 292.0        | 684.0        | 二级     | 甲类              | -                 | -        |
| 3  | 邻硝基对                     | 苯胺         | 砖混<br>结构    | 3      | 464          | 1392         | 二级     | 乙类              | -                 | -        |
| 4  | 2.5 二氯硝                  | <b>肖基苯</b> | 砖混<br>结构    | 3      | 130          | 310          | 二级     | 乙类              | -                 | -        |
|    |                          | 罐组一        | -           | -      | 922.67       | 922.67       | -      | 丙类              | -                 |          |
| 5  | 罐区                       | 罐组二        | -           | -      | 853.82       | 853.82       | -      | 丙类              | -                 | -        |
|    |                          | 罐组三        | -           | -      | 308.58       | 308.58       | -      | 乙类              | -                 |          |
| 6  | 2#丙类仓                    | <b>全</b> 库 | 钢混<br>结构    | 1      | 983.4        | 983.4        | 二级     | 丙类              | -                 | -        |
| 7  | 循环水冷却                    | 印水池        | 砼           | -      | -            | -            | -      | 丁类              | -                 | -        |
| 8  | 二氯苯冷液                    | 东结晶        | 框架          | 4      | 154          | 462          | 二级     | 丙类              | -                 | -        |
| 9  | 二氯苯料                     | 青馏         | 框架          | 5      | 471.37       | 1081.6       | 二级     | 丙类              | -                 | -        |
| 10 | 消防泵                      | 房          | 砖混<br>结构    | 1      | 73.6         | 73.6         | 二级     | 丁类              | -                 | -        |
| 11 | 门卫                       |            | 砖混<br>结构    | 1      | 60           | 60           | 二级     | 民用              | -                 | -        |
| 12 | 办公室                      | 宦          | 砖混<br>结构    | 3      | 370.1        | 1110.4       | 二级     | 民用              | -                 | -        |
| 13 | 值班望                      | 宦          | 砖混<br>结构    | 1      | 333.8        | 668          | 二级     | 民用              | -                 | -        |
| 14 | 生产综合                     | <b>含楼</b>  | 砖混<br>结构    | 2      | 370.1        | 740.2        | 二级     | 民用              | -                 | -        |
| 15 | 地下事故區                    | 立急池        | 砼           | -      | 150.00       | -            | -      | 丁类              | -                 | $825m^3$ |
| 16 | 危险品仓库(在用部分为<br>东西两个防火分区) |            | 钢混<br>结构    | 1      | 230.63       | 230.63       | 二级     | 甲类              | 仓侧采火全停<br>库部用墙封用。 | -        |
| 17 | 保安室                      | 童          | 砖混<br>结构    | 1      | 32.00        | 32.00        | 二级     | 戊类              | -                 | -        |
| 18 | 污水处                      | 理          | 砼           | -      | 100.9        | -            | -      | 丁类              | -                 | -        |
| 19 | 综合楼(技                    | 广建)        | 砖混          | 3      | 483.82       | 1337.78      | 二级     | 民用              | -                 | _        |

| 序号 | 建(构)筑物名称    | 房屋<br>结构 | 层数 | 占地面<br>积(m²) | 建筑面<br>积(m²) | 建筑<br>耐火<br>等级 | 火灾危<br>险性分<br>类 | 停用与<br>变更 | 备注                |
|----|-------------|----------|----|--------------|--------------|----------------|-----------------|-----------|-------------------|
|    |             | 结构       |    |              |              |                |                 |           |                   |
| 20 | 槽车停车场       | -        | -  | -            | -            | -              | -               | -         | -                 |
| 21 | 冷冻机房        | 砖混<br>结构 | 1  | 70           | 70           | 二级             | 丁类              | -         | -                 |
| 22 | 初期雨水<br>收集池 | 砼        | -  | 162.00       | -            | -              | -               | -         | 500m <sup>3</sup> |
| 23 | 新建配套普通仓库    | 砖混<br>结构 | 2  | 204.59       | 409.18       | 二级             | 丁类              | 新建        | -                 |
| 24 | 发电间         | 砖混<br>结构 | 1  | 45.38        | 45.38        | 一级             | 丙类              | 新建        | -                 |
| 25 | 生活污水池       | 砼        | -  | 9            | -            | -              | 戊类              | -         | -                 |
| 26 | 备用水池        | 砼        | -  | 30           | -            | -              | 戊类              | -         | -                 |
| 27 | 消防水池        | -        | -  | 203          | -            | -              | 戊类              | -         | -                 |
| 28 | 排放池         | -        | -  | 65.12        | -            | -              | 戊类              | -         | _                 |



图 4.2-1 厂区平面布置图

## 4.3 各重点场所、重点设施设备情况

根据人员访谈、现场排查识别可能通过渗漏、流失、扬散等途径 导致土壤或地下水污染的重点场所和重点设施,本次将江苏隆昌化工 有限公司涉及生产的区域内的各车间、仓库、罐区、污水处理等都作 为重点场所进行考虑,各重点场所、重点设施设备情况见表 4.3-1。

表 4.3-1 各重点场所、重点设施设备情况

| 序号 | 重点场所                | 用途                      | 重点设施         |
|----|---------------------|-------------------------|--------------|
| 1  | 固废库                 | 危废贮存                    | -            |
| 2  | 1#丙类仓库              | 原辅料及产品储存                | -            |
| 3  | 2#丙类仓库              | 原辅料及产品储存                | -            |
|    |                     |                         | 2,4 二氯苯乙酮生产线 |
|    |                     |                         | 氯苯槽          |
|    |                     |                         | 混苯槽          |
|    | 2,4 二氯苯乙酮车间及其附属设施   |                         | 2,4-二氯苯乙酮    |
| 4  |                     | 2,4-二氯苯乙酮的生<br>产,以及副产盐酸 | 氯苯塔          |
|    |                     |                         | 蒸馏塔          |
|    |                     |                         | 间二氯苯槽        |
|    |                     |                         | 半成品罐         |
|    |                     |                         | 成品槽          |
|    |                     |                         | 邻硝基对氯苯胺生产线   |
| 5  | 邻硝基对氯苯胺车间及<br>其附属设施 | 邻硝基对氯苯胺的生<br>产,以及副产氯化铵  | 配氨水罐         |
|    |                     |                         | 氨回收水釜        |
|    |                     |                         | 二氯苯冷冻结晶生产线   |
| 6  | 二氯苯冷冻结晶<br>车间及其附属设施 | 二氯苯的生产                  | 对二氯苯槽        |
|    |                     |                         | 结晶器          |

| 序号 | 重点场所              | 用途       | 重点设施         |
|----|-------------------|----------|--------------|
|    |                   |          | 2,5 二氯硝基苯生产线 |
|    |                   |          | 洗涤塔          |
|    |                   |          | 3,4-二氯硝基苯中转槽 |
|    |                   |          | 2,5-二氯硝基苯中转槽 |
| 7  | 2,5 二氯硝基苯车间及其     | 2,5 二氯硝  | 水洗釜          |
| /  | 附属设施              | 基苯的生产    | 中和釜          |
|    |                   |          | 硫酸槽          |
|    |                   |          | V304a 二次水池   |
|    |                   |          | V304b 二次水池   |
|    |                   |          | V305b 一次水池   |
|    |                   |          | 二氯苯精馏生产线     |
|    | 二氯苯精馏车间及其附<br>属设施 |          | 二氯苯槽         |
| 8  |                   | 混合二氯苯的分离 | 精馏塔          |
|    |                   |          | 解析水槽         |
|    |                   |          | 水洗塔          |
|    |                   |          | 混合二氯苯槽       |
|    |                   |          | 混二氯苯沉降槽      |
| 9  | 罐组一               | 物料储存     | 邻二氯苯槽        |
|    |                   |          | 间二氯苯槽        |
|    |                   |          | 对二氯苯槽        |
|    |                   |          | 邻二氯苯槽        |
|    |                   |          | 对二氯苯槽        |
| 10 | 罐组二               | 物料储存     | 二氯苯干燥槽       |
|    |                   |          | 二氯苯备用槽       |
|    |                   |          | 邻二氯苯备用槽      |

| 序号 | 重点场所          | 用途                 | 重点设施      |
|----|---------------|--------------------|-----------|
|    |               |                    | 氨水槽       |
| 11 | 罐组三           | 物料储存               | 硝酸槽       |
|    |               |                    | 浓硫酸槽      |
|    |               |                    | 排放池       |
| 12 | 污水处理          | 厂区生产废水及生活废<br>水的处理 | 沉淀池       |
|    |               |                    | 中和池       |
|    |               |                    | 调配池       |
| 13 | 污水处理          | 厂区生产废水及生活废         | 调节池       |
| 15 |               | 水的处理               | 中和池       |
|    |               |                    | 污泥浓缩池     |
| 14 | 地下事故应急池       | 事故状态下,<br>废水的收集    | 地下事故应急池   |
| 15 | 地下初期雨水<br>收集池 | 初期雨水的收集            | 地下初期雨水收集池 |
| 16 | 生活污水池         | 生活污水池              | 生活污水的收集   |
| 17 | 危险品仓库         | 危险品仓库              | 物料储存      |

## 5 重点监测单元识别与分类

### 5.1 重点单元情况

根据《工业企业土壤和地下水自行监测 技术指南(试行)》(HJ 1209-2021)、《重点监管单位土壤污染隐患排查指南(试行)》等相关技术规范的要求排查企业内有潜在土壤污染隐患的重点场所及重点设施设备,将其中可能通过渗漏、流失、扬散等途径导致土壤或地下水污染的场所或设施设备识别为重点监测单元。

重点场所或重点设施设备分布较密集的区域可统一划分为一个 重点监测单元,每个重点监测单元原则上面积不大于 6400m<sup>2</sup>。

本项目重点单元情况见表 5.1-1, 重点单元划分见图 5.1-1。

表 5.1-1 重点监测单元清单

| 序号   | 占地面积(m²) | 单元内需要监测的重点<br>场所/设施/设备名称 | 重点场所/设施/设备坐标<br>(中心点坐标)   |
|------|----------|--------------------------|---------------------------|
|      |          | 固废库                      | N32.089167°; E120.519339° |
| 单元 A | 2600     | 1#丙类仓库                   | N32.089143°; E120.519087° |
|      |          | 2#丙类仓库                   | N32.088977°; E120.518691° |
|      |          | 2,4 二氯苯乙酮车间              | N32.089405°; E120.518658° |
| 单元 B | 6200     | 邻硝基对氯苯胺车间                | N32.089725°; E120.518655° |
|      |          | 二氯苯冷冻结晶车间                | N32.090093°; E120.519067° |
|      |          | 2,5 二氯硝基苯车间              | N32.090045°; E120.518553° |
|      | 6300     | 二氯苯精馏车间                  | N32.090092°; E120.519080° |
| 单元 C |          | 罐组一                      | N32.090401°; E120.518512° |
|      |          | 罐组二                      | N32.090439°; E120.518883° |
|      |          | 罐组三                      | N32.090464°; E120.519126° |
| 单元 D | 3900     | 污水处理                     | N32.090484°; E120.519392° |

| 序号 | 占地面积(m²) | 单元内需要监测的重点<br>场所/设施/设备名称 | 重点场所/设施/设备坐标<br>(中心点坐标)   |
|----|----------|--------------------------|---------------------------|
|    |          | 地下事故应急池                  | N32.090108°; E120.519489° |
|    |          | 地下初期雨水收集池                | N32.090015°; E120.519698° |
|    |          | 生活污水池                    | N32.090256°; E120.519715° |
|    |          | 危险品仓库                    | N32.090129°; E120.519667° |
|    |          | 五金仓库                     | N32.089907°; E120.519613° |



图 5.1-1 重点单元划分见图

#### 5.2 识别/分类结果及原因

识别重点监测单元目的是为了确定污染物源头和可能的渗透途径。按照下表中划分依据确定本厂区的重点监测单元。

表 5.2-1 重点监测单元分类表

| 单元类别 | 划分依据                 |
|------|----------------------|
| 一类单元 | 内部存在隐蔽性重点设施设备的重点监测单元 |
| 二类单元 | 除一类单元外其他重点监测单元       |

注:隐蔽性重点设施设备,指污染发生后不能及时发现或处理的重点设施设备,如地下、半地下或接地的储罐、池体、管道等。

根据现场资料收集、现场踏勘、以及人员访谈的调查结果,并综合考虑污染源分布、污染物类型、污染物迁移途径等因素,项目组对江苏隆昌化工有限公司重点场所和重点设施进行了识别,确定了重点监测单元,识别过程如下:

表 5.2-2 重点监测单元识别情况

| <br>序<br>号  | 单元内需要监测<br>的重点场所/设施/<br>设备名称 | 设施坐标<br>(中心点坐标)             | 是否有<br>隐蔽性<br>设施 | 単元<br>类别 | 识别原因                                                         |
|-------------|------------------------------|-----------------------------|------------------|----------|--------------------------------------------------------------|
| 単           | 固废库                          | N32.089167°<br>E120.519339° | 否                |          | 本区域涉及企业生产过程中原料及产品 的储存,以及危废的储存,在意外情况                          |
| 平<br>元<br>A | 1#丙类仓库                       | N32.089143°<br>E120.519087° | 否                | 二类<br>单元 | 下,原辅料及危废的储存及转运过程可能会有污染物跑冒滴漏,从而造成土壤                           |
| А           | 2#丙类仓库                       | N32.088977°<br>E120.518691° | 否                |          | 和地下水产生污染。此单元内不存在地<br>下设施,因此设置为二类单元。                          |
|             | 2,4 二氯苯乙酮车<br>间及其附属设施        | N32.089405°<br>E120.518658° | 否                |          | 本区域均为生产车间及其配套设施,包括 2,4-二氯苯乙酮、新型防水材料、土                        |
| 单<br>元<br>P | 邻硝基对氯苯胺<br>车间及其附属设<br>施      | N32.089725°<br>E120.518655° | 否                | 二类单元     | 壤修复剂、邻硝基对氯苯胺、二氯苯的<br>生产,该区域内涉及大量原辅料的使用,<br>以及生产过程中会有三废污染物产生, |
| В           | 二氯苯冷冻结晶<br>车间及其附属设<br>施      | N32.090093°<br>E120.519067° | 否                |          | 因此需要对土壤和地下水进行设点监测,排查其是否受到污染。。此单元内不存在地下设施,因此设置为二类单元。          |
| —<br>单<br>元 | 2,5 二氯硝基苯车<br>间及其附属设施        | N32.090045°<br>E120.518553° | 是                | 一类       | 本区域包括 2,5-二氯硝基苯、3,4-二氯硝基苯以及二氯苯生产车间及配套设施,                     |
| 元<br>C      | 二氯苯精馏车间<br>及其附属设施            | N32.090092°<br>E120.519080° | 否                | 単元       | 同时靠近罐组区,该区域内涉及大量原<br>辅料的储存和使用,因此需要对土壤和                       |

| 序<br>号 | 单元内需要监测<br>的重点场所/设施/<br>设备名称 | 设施坐标<br>(中心点坐标)             | 是否有<br>隐蔽性<br>设施 | 单元 类别 | 识别原因                                                 |
|--------|------------------------------|-----------------------------|------------------|-------|------------------------------------------------------|
|        | 罐组一                          | N32.090401°<br>E120.518512° | 否                |       | 地下水进行设点监测,排查其是否受到<br>污染。其中单元内 V304a 二次水池,半           |
|        | 罐组二                          | N32.090439°<br>E120.518883° | 否                |       | 地下式,地面下深度 1.1 米; V304b 二次水池,半地下式,地面下深度 1.2 米;        |
|        | 罐组三                          | N32.090464°<br>E120.519126° | 否                |       | V305b 一次水池, 半地下式, 地面下深度 1.1 米, 属于隐蔽设施, 因此本单元识别为一类单元。 |
|        | 污水处理                         | 32.090484°<br>120.519392°   | 是                |       | 此区域包含厂区污水处理站、地下事故                                    |
|        | 地下事故<br>应急池                  | 32.090108°<br>120.519489°   | 是                |       | 应急池、地下初期雨水池及危险品仓库<br>等。其中排放池为半地下式,地下部分               |
| 单<br>元 | 地下初期雨水收<br>集池                | 32.090015°<br>120.519698°   | 是                | 一类    | 深度为 1.8 米; 沉淀池为地下式, 地下部分深度 2.0 米; 中和池为地下式, 地下部       |
| D      | 生活污水池                        | 32.090256°<br>120.519715°   | 是                | 単元    | 分为 2.0 米;调配池为半地下式,地下部分深度为 2.0 米;调节池为半地下式,地           |
|        | 危险品仓库                        | 32.090129°<br>120.519667°   | 否                |       | 下部分深度为 2.0 米; 污泥浓缩池为半地下式, 地下部分深度为 2.0 米。属于隐蔽         |
|        | 五金仓库                         | 32.089907°<br>120.519613°   | 否                |       | 设施,因此本单元识别为一类单元。                                     |

## 5.3 关注污染物

根据《工业企业土壤和地下水自行监测 技术指南(试行)》(HJ 1209-2021)中监测因子筛选原则以及相关要求:初次监测原则上所有土壤监测点的监测指标应至少包括 GB 36600-2018 表 1 中列举的所有基本项目,地下水监测井的监测指标至少包括 GB/T14848-2017 表 1 中常规指标(微生物指标、放射性指标除外)以及企业涉及的所有关注污染物进行分析测试。

企业涉及的关注污染物包括:

(1)企业环境影响评价文件及其批复中确定的土壤和地下水特征因子; (2)排污许可证等相关管理规定或企业执行的污染物排放 (控制)标准中可能对土壤或地下水产生影响的污染物指标; (3)企业生产过程的原辅用料、生产工艺、中间及最终产品中可能对土壤

或地下水产生影响的,已纳入有毒有害或优先控制污染物名录的污染物指标或其他有毒污染物指标; (4)上述污染物在土壤或地下水中转化或降解产生的污染物; (5)涉及 HJ 164 附录 F 中对应行业的特征项目(仅限地下水监测)。

以上 5 条所涉及的部分特征因子不在 GB 36600-2018 标准中,且 暂无相关环境分析方法的,暂不做相关检测,待有相关国家标准更新, 再进行检测。

根据以上原则及要求,对江苏隆昌化工有限公司涉及的污染物进行了筛选与统计,具体见表 5.3-1。

表 5.3-1 污染物情况表

| 序号          | 单元内需要监测的<br>重点场所/设施/设<br>备名称                                       | 功能(即该重点场<br>所/设施/设备设计<br>的生产活动) | 涉及污染<br>物质清单                              | 关注污<br>染物                                              |
|-------------|--------------------------------------------------------------------|---------------------------------|-------------------------------------------|--------------------------------------------------------|
|             | 固废库                                                                | 危废贮存                            | 精、蒸馏残渣、废活性炭、<br>废水处理污泥等                   | <ul><li>邻二氯苯、三氯</li><li>苯、苯胺、硝基</li><li>苯、氯苯</li></ul> |
| 单<br>元<br>A | 1#丙类<br>仓库<br>原料及产品储存                                              |                                 | 烧碱、4-氯-2-硝基苯胺、水<br>化氯铝酸钙、2,4-二氯苯乙<br>酮等   | pH、苯胺、硝基<br>苯、邻二氯苯                                     |
|             | 2#丙类<br>仓库                                                         | 原料及产品储存                         | 4-氯-2-硝基苯胺、90%氯化<br>铵、水化氯铝酸钙等             | pH、苯胺、<br>硝基苯                                          |
| 単           | 2,4 二氯苯         乙酮车间         2,4-二氯苯乙酮的         生产,以及副产盐         酸 |                                 | 2,4-二氯苯乙酮、盐酸、对<br>二氯苯、AlCl <sub>3</sub> 等 | pH、二氯苯                                                 |
| 甲<br>元<br>B | 邻硝基对氯苯胺<br>车间<br>邻硝基对氯苯胺<br>的生产,以及副产<br>氯化铵                        |                                 | 邻硝基对氯苯胺、2,5-二氯<br>硝基苯、氨水、氯化铵等             | 苯胺、硝基苯                                                 |
|             | 二氯苯冷冻结晶<br>车间                                                      | 二氯苯<br>的生产                      | 二氯苯等                                      | 二氯苯                                                    |

| 序号          | 单元内需要监测的<br>重点场所/设施/设<br>备名称 | 功能(即该重点场<br>所/设施/设备设计<br>的生产活动) | 涉及污染<br>物质清单                                               | 关注污<br>染物                 |
|-------------|------------------------------|---------------------------------|------------------------------------------------------------|---------------------------|
| 单元          | 2,5 二氯硝<br>基苯车间              | 2,5-二氯硝基苯、<br>3,4-二氯硝基苯的<br>生产  | 2,5-二氯硝基苯、3,4-二氯<br>硝基苯、对二氯苯、邻二氯<br>苯、硝酸、硫酸、氢氧化钠<br>等      | pH、对二氯苯、<br>邻二氯苯          |
| C           | 二氯苯精馏车间                      | 混合二氯苯的分离                        | 混合二氯苯、邻二氯苯、对二氯苯、间二氯苯、间二氯苯、氯苯等                              | 氯苯、邻二氯苯、<br>对二氯苯、间二<br>氯苯 |
|             | 罐组一                          | 物料储存                            | 混合二氯苯、邻二氯苯、对<br>二氯苯、间二氯苯等                                  | 邻二氯苯、对二<br>氯苯、间二氯苯        |
| 单<br>元<br>C | 罐组二                          | 物料储存                            | 二氯苯、邻二氯苯、对二氯<br>苯等                                         | 邻二氯苯、对二<br>氯苯、间二氯苯        |
|             | 罐组三                          | 物料储存                            | 氨水、硝酸、硫酸等                                                  | рН                        |
|             | 污水处理                         | 厂区生产废水及<br>生活废水的处理              | pH、对苯二酚、1,2-二氯苯<br>等                                       | pH、1,2-二<br>氯苯            |
| 24          | 地下事故应急池                      | 事故状态下,废水<br>的收集                 | 事故状态下可能涉及废水<br>污染物、废气污染物、危废<br>污染物、各类原辅料                   | 所有单元涉及的<br>污染物            |
| 单<br>元<br>D | 地下初期雨水<br>初期雨水的收集<br>收集池     |                                 | 在污染物跑冒滴漏进入厂<br>区内雨水管道时,可能涉及<br>废水污染物、废气污染物、<br>危废污染物、各类原辅料 | 所有单元涉及的<br>污染物            |
|             | 生活污水池                        | 生活污水的收集                         | -                                                          | -                         |
|             | 危险品仓库                        | 物料储存                            | 乙酰氯、三氯化铝等                                                  | -                         |
|             | 五金仓库                         | 五金件仓库                           |                                                            | -                         |

综上所述,江苏隆昌化工有限公司地块内关注的污染物包括: pH、石油烃( $C_{10}$ - $C_{40}$ )、氯苯、苯胺、硝基苯、1,2-二氯苯、1,4-二氯苯、三氯苯、1,3-二氯苯。

### 6 监测点位布设方案

### 6.1 重点单元及相应监测点/监测井的布设位置

根据《工业企业土壤和地下水自行监测 技术指南(试行)》(HJ 1209-2021)可知监测点位的布设原则如下:

- (1)监测点位的布设应遵循不影响企业正常生产且不造成安全 隐患与二次污染的原则。
- (2)点位应尽量接近重点单元内存在土壤污染隐患的重点场所或重点设施设备,重点场所或重点设施设备占地面积较大时,应尽量接近该场所或设施设备内最有可能受到污染物渗漏、流失、扬散等途径影响的隐患点。
- (3)根据地勘资料,目标采样层无土壤可采或地下水埋藏条件 不适宜采样的区域,可不进行相应监测,但应在监测报告中提供地勘 资料并予以说明。

## 6.1.1 土壤监测点

## 6.1.1.1 土壤监测点置及数量

- (1)一类单元:一类单元涉及的每个隐蔽性重点设施设备周边原则上均应布设至少1个深层土壤监测点,单元内部或周边还应布设至少1个表层土壤监测点。
- (2) 二类单元:每个二类单元内部或周边原则上均应布设至少1个表层土壤监测点,具体位置及数量可根据单元大小或单元内重点场所或重点设施设备的数量及分布等实际情况适当调整。监测点原则上应布设在土壤裸露处,并兼顾考虑设置在雨水易于汇流和积聚的区域,污染途径包含扬散的单元还应结合污染物主要沉降位置确定点位。

#### 6.1.1.2 土壤采样深度

- (1)深层土壤:深层土壤监测点采样深度应略低于其对应的隐蔽性重点设施设备底部与土壤接触面;下游 50 m 范围内设有地下水监测井并按照本标准要求开展地下水监测的单元可不布设深层土壤监测点。
- (2) 表层土壤:表层土壤监测点采样深度应为 0~0.5m;单元内部及周边 20m 范围内地面已全部采取无缝硬化或其他有效防渗措施,无裸露土壤的,可不布设表层土壤监测点,但应在监测报告中提供相应的影像记录并予以说明。

根据以上原则及要求,同时结合江苏隆昌化工有限公司地块内的实际情况,自行监测土壤监测点的设置情况见表 6.1-1。

| 序号                                    | 点位编号     | 点位坐标                            | 钻探深度           | 备注                                     |  |  |  |
|---------------------------------------|----------|---------------------------------|----------------|----------------------------------------|--|--|--|
| ————————————————————————————————————— | AT1      | N32.089034°<br>E120.518940°     | 表层土            | 二类单元                                   |  |  |  |
| ————<br>单元 B                          | BT1      | N32.089516°<br>E120.519399°     | 表层土            | 二类单元                                   |  |  |  |
| 半儿 B                                  | BT2      | BT2 N32.089589°<br>E120.518493° |                | 一关平儿                                   |  |  |  |
| 单元 C                                  | CT1      | N32.090223°<br>E120.519296°     | 表层土            | 一类单元                                   |  |  |  |
|                                       | CT2      | N32.089986°<br>E120.518401°     | 深层土            | 关                                      |  |  |  |
| ————<br>单元 D                          | DT1      | N32.090258°<br>E120.519600°     | 表层土            | 一类单元                                   |  |  |  |
| <b>半</b> 儿 ⋃                          | DT2      | N32.090215°<br>E120.519423°     | 深层土            | —————————————————————————————————————  |  |  |  |
|                                       | 一十 川、人 川 |                                 | <b>台</b> /二版 > | 11 11 11 11 11 11 11 11 11 11 11 11 11 |  |  |  |

表 6.1-1 土壤监测点位设置情况表

根据《工业企业土壤和地下水自行监测 技术指南》 (HJ1209-2021)要求,深层土壤监测频次为3年/次,且2024年8 月自行监测土壤监测结果均符合要求。故本次监测土壤监测点采集表 层土壤。

## 6.1.2 地下水监测点

- (1)对照点:企业原则上应布设至少1个地下水对照点;对照点布设在企业用地地下水流向上游处,与污染物监测井设置在同一含水层,并应尽量保证不受自行监测企业生产过程影响;临近河流、湖泊和海洋等地下水流向可能发生季节性变化的区域可根据流向变化适当增加对照点数量。
- (2)监测井位置及数量:每个重点单元对应的地下水监测井不应少于1个。每个企业地下水监测井(含对照点)总数原则上不应少于3个,且尽量避免在同一直线上;应根据重点单元内重点场所或重点设施设备的数量及分布确定该单元对应地下水监测井的位置和数量,监测井应布设在污染物运移路径的下游方向,原则上井的位置和数量应能捕捉到该单元内所有重点场所或重点设施设备可能产生的地下水污染;地面已采取了符合 HJ 610 和 HJ 964 相关防渗技术要求的重点场所或重点设施设备可适当减少其所在单元内监测井数量,但不得少于1个监测井;企业或邻近区域内现有的地下水监测井,如果符合本标准及 HJ164 的筛选要求,可以作为地下水对照点或污染物监测井;监测井不宜变动,尽量保证地下水监测数据的连续性。
- (3) 采样深度: 自行监测原则上只调查潜水; 涉及地下取水的企业应考虑增加取水层监测; 采样深度参见 HJ 164 对监测井取水位置的相关要求。

根据以上原则及要求,同时结合江苏隆昌化工有限公司地块内的实际情况,本次监测地下水监测点的设置情况见表 6.1-2。

表 6.1-2 地下水监测点位设置情况表

|      | 点位编号 | 点位坐标                        | 监测井深度 | 备注   |
|------|------|-----------------------------|-------|------|
| -    | DZS1 | N32.088982°<br>E120.519822° | 6.0m  | 对照点  |
| 単元 A | AS1  | N32.089122°<br>E120.519437° | 6.0m  | 二类单元 |

| 単元 B | BS1 | N32.089611°<br>E120.518467° | 6.0m | 二类单元 |
|------|-----|-----------------------------|------|------|
| 单元 C | CS1 | N32.090538°<br>E120.518348° | 6.0m | 一类单元 |
| 単元 D | DS1 | N32.090370°<br>E120.519470° | 6.0m | 一类单元 |

根据确定好的土壤和地下水监测点位,可知土壤和地下水自行监测点位布设见图 6.1-1。



图 6.1-1 土壤和地下水点位布设图

## 6.2 各点位布设原因

(1) AT1/AS1 点位: 点位位于单元 A 内,单元内包括 1#丙类仓库、2#丙类仓库、固废库,该单元涉及企业生产过程中原料及产品的储存,以及危废的储存,在意外情况下,原辅料及危废的储存及转运过程可能会有污染物跑冒滴漏,从而造成土壤和地下水产生污染,根据现场勘察可知,该单元内无隐蔽设施,属于二类单元,因此设置 1

个表层土壤采样点和1个地下水监测点。

- (2) BT1/BT2/BS1 点位: 点位位于单元 B 内,单元内包括 2,4 二氯苯乙酮车间及其附属设施、邻硝基对氯苯胺车间及其附属设施、二氯苯冷冻结晶车间及其附属设施,进行 2,4-二氯苯乙酮、新型防水材料、土壤修复剂、邻硝基对氯苯胺、二氯苯的生产,该单元内涉及大量原辅料的使用,以及生产过程中会有三废污染物产生,因此需要对土壤和地下水进行设点监测,排查其是否受到污染,经过现场勘察可知,该单元内无隐蔽设施,属于二类单元,因此设置 1 个表层土壤采样点和 1 个地下水监测点。考虑到单元 B 面积较大,因此增设 1 个表层土壤采样点。
- 二氯硝基苯车间及其附属设施、二氯苯精馏车间及其附属设施、罐组一、罐组二、罐组三,涉及 2,5-二氯硝基苯、3,4-二氯硝基苯、二氯苯的生产,以及部分原辅料的储存,因此需要对土壤和地下水进行设点监测,排查其是否受到污染,经过现场勘察可知,该单元内部存在隐蔽设施(V304a 二次水池,半地下式,地面下深度 1.1 米; V304b 二次水池,半地下式,地面下深度 1.2 米; V305b 一次水池,半地下式,地面下深度 1.1 米),属于一类单元,因此设置 1 个深层土壤采样点、1 个表层土壤采样点和 1 个地下水监测点。

(3) CT1/CT2/CS1 点位: 点位位于单元 C 内, 单元内包括 2.5

(4) DT1/DT2/DS1 点位: 点位位于单元 D 内,单元内包括厂区 污水处理站、地下事故应急池、地下初期雨水池及危险品仓库等,经 过现场勘察可知,该单元内部存在隐蔽设施(排放池为半地下式,地下部分深度为 1.8 米;沉淀池为地下式,地下部分深度 2.0 米;中和 池为地下式,地下部分为 2.0 米;调配池为半地下式,地下部分深度 为 2.0 米;调节池为半地下式,地下部分深度为 2.0 米;污泥浓缩池

为半地下式,地下部分深度为 2.0 米),属于一类单元,因此设置 1 个深层土壤采样点、1 个表层土壤采样点和 1 个地下水监测点。

#### 6.3 各点位监测指标及选取原因

根据《工业企业土壤和地下水自行监测 技术指南(试行)》(HJ 1209-2021), (1)初次监测原则上所有土壤监测点的监测指标至少应包括 GB 36600 表 1 基本项目,地下水监测井的监测指标至少应包括 GB/T 14848 表 1 常规指标(微生物指标、放射性指标除外)。企业内任何重点单元涉及上述范围外的关注污染物,应根据其土壤或地下水的污染特性,将其纳入企业内所有土壤或地下水监测点的初次监测指标。(2)后续监测按照重点单元确定监测指标,每个重点单元对应的监测指标至少应包括:该重点单元对应的任一土壤监测点或地下水监测井在前期监测中曾超标的污染物,受地质背景等因素影响造成超标的指标可不监测:该重点单元涉及的所有关注污染物。

根据 5.3 章节对污染物的识别和分析,江苏隆昌化工有限公司需要关注的污染物包括 pH、石油烃( $C_{10}$ - $C_{40}$ )、氯苯、苯胺、硝基苯、1,2-二氯苯、1,4-二氯苯、三氯苯、1,3-二氯苯。

综上所述, 江苏隆昌化工有限公司土壤和地下水自行监测指标具体见表 6.3-1。

表 6.3-1 土壤和地下水监测指标汇总

| 类别  | 测试项目                                                                                                                                                                                                                                                                                                                                                       |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 土壤  | <b>GB 36600-2018 表 1 中 45 项:</b><br><b>重金属和无机物 7 项</b> (六价铬、砷、镉、铜、铅、汞、镍)<br><b>挥发性有机物 27 项</b> (四氯化碳、氯仿、氯甲烷、1,1-二氯乙烷、1,2-二氯乙烷、1,1-二氯乙烯、顺-1,2-二氯乙烯、反-1,2-二氯乙烯、二氯甲烷、1,2-二氯丙烷、1,1,1,2-四氯乙烷、1,1,2,2-四氯乙烷、四氯乙烯、1,1,1-三氯乙烷、1,1,2-三氯乙烷、三氯乙烯、1,2,3-三氯丙烷、氯乙烯、苯、氯苯、1,2-二氯苯、1,4-二氯苯、乙苯、苯乙烯、甲苯、间二甲苯+对二甲苯、邻二甲苯)<br><b>半挥发性有机物 11 项</b> (硝基苯、苯胺、2-氯酚、苯并[a]蒽、苯并[a]芘、苯并[b] |
| 地下水 | GB/T 14848-2017 表 1 中 35 项 (除去微生物指标): 色、嗅和味、浑浊度、肉眼可见物、pH 值、总硬度、溶解性总固体、硫酸盐、氯化物、铁、锰、铜、锌、铝、挥发性酚类、阴离子表面活性剂、耗氧量、氨氮、硫化物、钠、亚硝酸盐、硝酸盐、氰化物、氟化物、碘化物、汞、砷、硒、镉、六价铬、铅、三氯甲烷、四氯化碳、苯、甲苯特征因子: pH、石油烃 (C <sub>10</sub> -C <sub>40</sub> )、氯苯、苯胺、硝基苯、1,2-二氯苯、1,3-二氯苯、1,4-二氯苯、三氯苯                                                                                                |

## 7样品采集、保存、流转与制备

## 7.1 现场采样位置、数量和深度

根据第6章节的相关分析,确定了监测点位布设方案。土壤及地下水采样位置、数量和深度等汇总情况见表 7.1-1。

表 7.1-1 土壤和地下水采样信息表

| 点位编号 | 点位坐标                         | 点位类型 | 钻探深度          | 采样深度<br>(米)     | 单点<br>样品数 | 频次      |  |        |  |  |
|------|------------------------------|------|---------------|-----------------|-----------|---------|--|--------|--|--|
| AT1  | N32.089034°<br>E120.518940°  |      | 表层土           | 0-0.5m          | 1个        | 1 次/1 年 |  |        |  |  |
| BT1  | N32.089516°<br>E120.519399°  |      | 表层土           | 0-0.5m          | 1个        | 1 次/1 年 |  |        |  |  |
| BT2  | N32.089589°<br>E120.518493°  |      | 表层土           | 0-0.5m          | 1个        | 1 次/1 年 |  |        |  |  |
| CT1  | N32.090223°<br>E120.519296°  |      | 表层土           | 0-0.5m          | 1个        | 1 次/1 年 |  |        |  |  |
|      |                              |      |               | 0-0.5m          |           |         |  |        |  |  |
| CT2  | N32.089986°<br>E120.518401°  | 土壤   | 柱状土<br>(3.0m) | 1.0-1.5m        | 3 个       | 1 次/3 年 |  |        |  |  |
|      |                              |      |               | 2.5-3.0m        |           |         |  |        |  |  |
| DT1  | N32.090258°<br>E120.519600°  |      | 表层土           | 0-0.5m          | 1个        | 1 次/1 年 |  |        |  |  |
|      |                              |      |               |                 |           |         |  | 0-0.5m |  |  |
| DT2  | N32.090215°<br>E120.519423°  |      | 柱状土<br>(4.5m) | 2.0~2.5m        | 3 个       | 1 次/3 年 |  |        |  |  |
|      |                              |      |               | 4.0~4.5m        |           |         |  |        |  |  |
| DZS1 | N32.088982°<br>E120.519822°  |      | 6.0m          |                 | 1个        | 1 次/1 年 |  |        |  |  |
| AS1  | N32.089122°<br>E120.519437°  |      | 6.0m          |                 | 1个        | 1 次/1 年 |  |        |  |  |
| BS1  | N32.089611°<br>E120.518467°  | 地下水  | 6.0m          | 根据 HJ25<br>要求进行 | 1个        | 1 次/1 年 |  |        |  |  |
| CS1  | N 32.090175°<br>E120.518362° |      | 6.0m          |                 | 1个        | 1 次/半年  |  |        |  |  |
| DS1  | N32.090370°<br>E120.519470°  |      | 6.0m          |                 | 1 个       | 1 次/半年  |  |        |  |  |

注:根据《工业企业土壤和地下水自行监测 技术指南》HJ1209-2021,深层土已于 2024年8月监测,且符合《土壤环境质量 建设用地土壤污染风险管控标准(试行)(GB36600-2018)表1以及《建设用地土壤污染风险筛选值和管制值》(DB4403/T 67-2020)表2中第二类用地的筛选值。本次只监测表层土。

根据园区要求,隆昌化工地下水点位进行了调整,原设置的DZS1~DS1点位取消,按照园区要求进行地下水监测GW1~GW12,监测因子为GB/T14848-2017表1中35项(除去微生物指标)、可萃取性石油烃(C10-C40)、挥发性有机物、多环芳烃、苯胺、硝基苯、2-氯酚、1,2,3-三氯苯、1,2,4-三氯苯、1,3,5-三氯苯、环氧氯丙烷、氯甲烷、3,3-二氯联苯胺、3,4-二氯硝基苯、2,4-二氯苯乙酮、2,5-二氯硝基苯、邻硝基对氯苯胺。点位图如下:

下水环境影响, 地下水点位设置为本次调查设置中的 12 个



图 9.4-1 地下水长期监测井

图 7.1-1 地下水监测点位图(企业提供)

#### 7.2 采样方法及程序

#### (1) 土壤

土壤采样时,采样人员均佩戴一次性的 PE 手套,每个土样采样 前均要更换新的手套,以防止样品之间的交叉污染。②使用 XRF 和 PID 对从土孔中取出土壤的重金属、挥发性污染物进行测试,同时做 肉眼观察,记录各土层基本情况,包括土壤的组成类型、密实程度、 湿度和颜色,并特别注意是否有异样的污渍或异味存在,并进行记录。 ③根据现场快筛测定结果、土层信息等情况选取有代表性深度的土壤 样品,使用清洁的截管器截取该层土样。将样品装入相应的样品容器 中,专人负责对采样日期、采样地点、样品编号等信息进行记录。 ④ 土壤样品采集完成后,所有样品采集后及时放入装有冷冻蓝冰的低温 保温箱中,并及时送至实验室进行分析。

#### (2) 地下水

地下水采样工作前进行了洗井工作,洗井应满足 HJ25.2、HJ1019的相关要求。采样洗井步骤:①将贝勒管缓慢放入井内,直至完全浸入水体中,之后缓慢、匀速地提出井管;②将贝勒管中的水样倒入水桶,估算洗井水量,直至达到 3 倍井体积的水量;③在现场使用便携式水质测定仪,每间隔 5~15min 后测定出水水质,直至至少 3 项检测指标连续三次测定的变化达到中的稳定标准(pH值±0.1 以内;温度±0.5℃以内;电导率±10%以内;氧化还原电位±10mV以内,或在±10%内;溶解氧±0.3mg/L以内,或在±10%内;浊度≤10NTU,或在±10%内。);如洗井水量在 3~5 倍井体积之间,水质指标不能达到稳定标准,应继续洗井;如洗井水量达到 5 倍井体积后水质指标仍不能达到稳定标准,可结束洗井,并根据地下水含水层特性、监测井建设过程以及建井材料性状等实际情况判断是否进行样品采集。

## 7.3 采样保存、流转与制备

土壤采样、保存及流转情况见表 7.2-1, 地下水采样、保存及流转情况见表 7.2-2。

表 7.2-1 土壤样品采集、保存流转方法一览表

| -#K IIII |                                            | **************************************                   |                              |                                                |
|----------|--------------------------------------------|----------------------------------------------------------|------------------------------|------------------------------------------------|
| 类别<br>   | 污染物                                        | 样品采样                                                     | 样品保存                         | 样品流转<br>————————————————————————————————————   |
| 土壤       | pH 值                                       | 样品采集要要充满用可密封的<br>聚乙烯或玻璃容器                                | 在 4℃以下避光<br>保存               | 1、装运前核对:在<br>采样现场样品必须                          |
|          | 六价铬                                        | 样品的采集与保存应使用聚乙<br>烯或玻璃的装置和容器,不得<br>使用金属制品贮存器              | 4℃以下保存,可<br>保存1天             | 逐件与样品登记表、样品标签和采样记录进行核对,                        |
|          | 总汞                                         | 样品的采集与保存应使用玻璃<br>容器                                      | 4℃以下保存,可<br>保存 28 天          | 核对无误后分类装<br>箱;<br>2、运输中防损;运                    |
|          | 总砷                                         | 样品的采集与保存应使用聚乙<br>烯或玻璃的装置和容器                              | 4℃以下保存,可<br>保存 180 天         | 和中的初: 经<br>输过程中严防样品<br>的损失、混淆和沾                |
|          | 铅、镉、铜、<br>镍、锑                              | 样品的采集与保存应使用聚乙<br>烯或玻璃的装置和容器。                             | 4℃以下保存,可<br>保存 180 天         | 污。对光敏感的样<br>品应有避光外包<br>装:                      |
|          | 挥发性有机物                                     | 样品的采集与保存应使用具聚四氟乙烯-硅胶衬垫螺旋盖的60ml 棕色广口玻璃瓶(或大于60ml 其他规格的玻璃瓶) | 4℃以下保存,可<br>保存7天             | 3、样品交接: 由专<br>人将土壤样品送到<br>实验室,送样者和<br>接样者双方同时清 |
|          | 半挥发性<br>有机物                                | 样品应于洁净的具塞磨口棕色<br>玻璃瓶中保存。                                 | 密封、避光、4℃<br>以下冷藏,可保存<br>10 天 | 点核实样品,并在<br>样品交接单上签字<br>确认,样品交接单               |
|          | 石油烃<br>(C <sub>10</sub> -C <sub>40</sub> ) | 样品应于洁净的具塞磨口棕色<br>玻璃瓶中保存                                  | 密封、避光、4℃<br>以下冷藏,可保存<br>40 天 | 由双方各存一份备查。                                     |

# 表 7.2-2 地下水样品采集、保存流转方法一览表

| 类别 | 污染物       | 样品采样                                           | 样品保存     | 样品流转                            |
|----|-----------|------------------------------------------------|----------|---------------------------------|
|    | рН        | 现场测定,采样容器使用玻璃瓶<br>或聚乙烯瓶,采样量 200ml,容<br>器洗涤 1 次 | 保存期为 12h | 样品运输:<br>1、样品采集后应尽<br>快运送实验室分析; |
|    | 臭和味       | 现场测定,采样容器使用玻璃瓶,<br>采样量 200ml,容器洗涤 1 次          | 保存期为 6h  | 2、样品运输过程中应避免日光照射,并              |
|    | 肉眼可见<br>物 | 现场测定,采样容器使用玻璃瓶,<br>采样量 200ml,容器洗涤 1 次          | 保存期为 12h | 置于 4℃冷藏箱中保<br>存,气温异常偏高或         |

| 类别 | 污染物                                                          | 样品采样                                                                                                                                                                                    | 样品保存                                                             | 样品流转                                                                                                                                                           |  |
|----|--------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
|    | 色度                                                           | 样品的采集与保存应使用聚乙烯<br>或玻璃的装置和容器,采样量<br>250ml,容器洗涤 1 次                                                                                                                                       | 4℃以下保存,保<br>存期为 12h                                              | 偏低 时还应采取适<br>当保温措施;<br>3、水样装箱前应将                                                                                                                               |  |
|    | 浊度                                                           | 样品的采集与保存应使用聚乙烯<br>或玻璃的装置和容器,采样量<br>250ml,容器洗涤 1 次                                                                                                                                       | 4℃以下保存,保<br>存期为 12h                                              | 水样容器内外盖盖紧,对装有水样的玻璃磨口瓶应用聚乙烯                                                                                                                                     |  |
| 地下 | 总硬度                                                          | 样品的采集与保存应使用聚乙烯<br>或玻璃的装置和容器,采样量<br>250ml,容器洗涤1次                                                                                                                                         | 加 HNO3,pH<2,<br>保存期 30d; 不加<br>HNO3,保存期<br>30d                   | 薄膜覆 盖瓶口并用 细绳将瓶塞与瓶颈系 紧。 4、同一采样点的样                                                                                                                               |  |
| 水  | 溶解性总固体                                                       | 样品的采集与保存应使用聚乙烯<br>或玻璃的装置和容器,采样量<br>250ml,容器洗涤 1 次。                                                                                                                                      | 4℃以下避光保<br>存,保存期 24h                                             | 品瓶尽量装在同一箱<br>内,与采样记录或样<br>品交接单逐件核对,                                                                                                                            |  |
|    | 硫酸盐                                                          | 采集与保存应使用硬质玻璃瓶或<br>聚乙烯瓶,采样量 250ml,容器<br>洗涤 1 次。                                                                                                                                          | 检查 所采水样是否已全部装箱;<br>5、装箱时应用泡沫                                     |                                                                                                                                                                |  |
|    | 氯化物                                                          | 采集与保存应使用硬质玻璃瓶或<br>聚乙烯瓶,采样量 250ml,容器<br>洗涤 1 次。                                                                                                                                          | 保存期 30d                                                          | 塑料或波纹纸板垫底<br>和间隔防震;<br>6、运输时应有押运                                                                                                                               |  |
|    | 挥发性酚<br>类                                                    | 在样品采集现场,用淀粉-碘化钾试纸检测样品中有无游离氯等氧化剂的存在。若试纸变蓝,应及时加入过量硫酸亚铁去除。样品采集量应大于 500 ml,贮于硬质玻璃瓶中。采集后的样品应及时加磷酸酸化至 pH 约 4.0,并加适量硫酸铜,使样品中硫酸铜质量浓度约为 1 g/L,以抑制微生物对酚类的生物氧化作用。采集与保存应使用硬质玻璃瓶,采样量1000ml,容器洗涤 1 次。 | 保存期 24h                                                          | 人员,防止样品损坏<br>或受沾污;<br>7、样品送达实验量<br>后,由样品管理员好存;<br>1、相关。<br>样品交接与贮存;<br>1、样品发生。<br>样品发生。<br>样品发生。<br>样品发生。<br>样品发生。<br>样品发生。<br>样品管理员对有。<br>收;<br>2、样品管理员对查,标题。 |  |
|    | 阴离子表<br>面活性剂                                                 | 取样和保存样品应使用聚乙烯<br>瓶,采样量 250ml,容器洗涤 1<br>次。                                                                                                                                               | 保存期 14d                                                          | 识及外观是否完好;<br>对照 采样记录单检<br>查样品名称、采样地                                                                                                                            |  |
|    | 耗氧量                                                          | 采集与保存应使用硬质玻璃瓶或<br>聚乙烯瓶,采样量 250ml,容器<br>洗涤 1 次。                                                                                                                                          | 用 H <sub>2</sub> SO <sub>4</sub> 酸化<br>至 pH≤2,0~5℃保<br>存,保存期 24h | 点、样品数量、形态等是否一致;核对保存剂加入情况;样品                                                                                                                                    |  |
|    | 发家 1 次。<br>样品的采集与保存应使用聚乙烯<br>或玻璃的装置和容器,采样量<br>250ml,容器洗涤 1 次 |                                                                                                                                                                                         | 4℃以下保存,保<br>存期为 12h                                              | 是否冷藏,冷藏温度<br>是否满足要求;样品<br>是否有损坏或污染;                                                                                                                            |  |

| 类别  | 污染物                                                                                              | 样品采样                                                                                                                 | 样品保存                                                                     | 样品流转                                                                         |
|-----|--------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|------------------------------------------------------------------------------|
|     | 硫化物                                                                                              | 现场采集并固定的水样应贮存在<br>棕色瓶内                                                                                               | 保存时间为1周                                                                  | 3、当样品有异常,或<br>对样品是否适合测试                                                      |
|     | 亚硝酸盐 氮                                                                                           | 采集与保存应使用硬质玻璃瓶或<br>聚乙烯瓶,避光、<br>4℃以下冷藏。                                                                                | 用 H <sub>2</sub> SO <sub>4</sub> 酸化至<br>pH≤2, 4℃以下冷<br>藏避光保存,可保<br>存 7 天 | 有疑问时,样品管理<br>员应及时向送样人员<br>或 采样人员询问,样<br>品管理员应记录有关                            |
|     | 硝酸盐氮                                                                                             | 采集与保存应使用硬质玻璃瓶或<br>聚乙烯瓶                                                                                               | 用 H <sub>2</sub> SO <sub>4</sub> 酸化至<br>pH≤2, 4℃以下冷<br>藏避光保存,可保<br>存 7 天 | 说明及处理意见,当<br>明确样品有损坏或污<br>染时须重新采样;<br>4、样品管理员确定                              |
|     | 总氰化物                                                                                             | 采集与保存应使用硬质玻璃瓶或<br>聚乙烯瓶                                                                                               | 4℃以下冷藏 24h                                                               | 样品符合样品交接条件后,进行样品登记,                                                          |
| 地下水 | 氟化物                                                                                              | 取样和保存样品应使用聚乙烯瓶                                                                                                       | 避光、4℃以下冷<br>藏 14 天                                                       | 并由双方签字;<br>5、样品管理员负责保<br>持样品贮存间清洁、                                           |
| 八   | 碘化物                                                                                              | 采集与保存应使用硬质玻璃瓶                                                                                                        | 避光、4℃以下冷<br>藏 24h                                                        | 通风、无腐蚀的环境,<br>并对贮存环境条件加                                                      |
|     | 铁、锰、镉、铜、锌、铅、铝、钠、镍                                                                                | 采集与保存应使用聚乙烯瓶,若测定可溶性元素,样品采集后立即通过水系微孔滤膜过滤,弃去初始的50ml~100ml滤液,收集所需体积的滤液,加入适量硝酸使硝酸含量达到1%。如测定元素总量,样品采集后立即加入适量硝酸,使硝酸含量达到1%。 | 样品可保存 14 天                                                               | 以维持和监控;<br>6、样品贮存间应有冷藏、防水、防盗和门禁措施,以保证样品的安全性;<br>7、样品流转过程中,除样品唯一性标识需转移和样品测试状态 |
|     | 汞、砷、硒、<br>锑                                                                                      | 测可溶元素,滤膜过滤,收集滤液,加入适量硝酸使含量达到1%。若测总量,加入适量硝酸使含量达到含量达到1%                                                                 | 样品可保存 14 天                                                               | 需标识外,任何人、<br>任何时候都不得随意<br>更改样品唯一性编<br>号。分析原始记录应                              |
|     | 铬 (六价)                                                                                           | 实验室样品应该用玻璃瓶采集。<br>采集时加入氢氧化钠,调节样品<br>PH 值约为 8                                                                         | 并在采集后尽快<br>测定,如放置,不<br>要超过 24h                                           | 记录样品唯一性编号;<br>8、在实验室测试过程                                                     |
|     | 使用 1000ml 带聚四氟乙烯内衬垫瓶盖的棕色玻璃瓶,充满采样瓶,不留空袭,加入氢氧化钠或硫酸溶液调节 pH 值在 6~8。如水样中有余氯,每 1000ml 样品中加入 80mg 硫代硫酸钠 |                                                                                                                      | 4℃冷藏保存,7<br>天内萃取,萃取液<br>40 天内完成分析                                        | 中由测试人员及时做<br>好分样、移样的样品<br>标识转移,并根据测<br>试 状态及时作好相<br>应的标记;<br>9、地下水样品变化       |
| 地下  | 石油烃<br>(C <sub>10</sub> -C <sub>40</sub> )                                                       | 用 1L 具磨口塞的棕色玻璃瓶采<br>集约 1000mL 样品,加入盐酸溶<br>液酸化至 pH≤2                                                                  | 样品于 4℃保存,<br>14d 内完成萃取,<br>40d 内分析                                       | 快、时效性强,监测<br>后的样品均留样保存                                                       |

| <br>类别 | 污染物         | 样品采样                                                                                                                                                                             | 样品保存                                        | 样品流转                                                     |
|--------|-------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------|----------------------------------------------------------|
| 水      | 半挥发性<br>有机物 | 使用棕色玻璃瓶采样,样品充满样品瓶,去除余氯,每升样品中加入80mg硫代硫酸钠                                                                                                                                          | 0~4℃冷藏,样品<br>必须在7天内完<br>成萃取,萃取液<br>40d内完成分析 | 意义不大,但对于测试结果异常样品、应<br>急监测和仲裁监测样<br>品,应按样品保存条<br>件要求保留适当时 |
|        | 挥发性有<br>机物  | 胶-聚四氟乙烯衬垫螺纹盖。采样前,测定样品的 pH 值,根据 pH 值测定结果,在采样瓶中加入适量盐酸溶液,并加入 25 mg 抗坏血酸,使采样后样品的 pH≤2。若样品加入盐酸溶液后有气泡产生,须重新采样,重新采集的样品不加盐酸溶液保存,样品标签上须注明未酸化。采集样品时,应使样品在样品瓶中溢流且不留液上空间。取样时应尽量避免或减少样品在空气中暴露 | 在 4℃以下保存,<br>14d 内分析完毕                      | 间。留样样品应有留<br>样标识。                                        |

## 8 监测结果及分析

# 8.1 土壤监测结果分析

## 8.1.1 分析方法

土壤样品检测指标及分析方法见表 8.1-1, 土壤检测因子检出限 见表 8.1-2。

表 8.1-1 土壤样品检测指标及分析方法

| 土壤                                     |                                                             |  |  |  |  |
|----------------------------------------|-------------------------------------------------------------|--|--|--|--|
| 《土壤环境监测技术                              | 《土壤环境监测技术规范》HJ/T 166 -2004                                  |  |  |  |  |
| pH 值                                   | 《土壤 pH 的测定 电位法》HJ 962-2018                                  |  |  |  |  |
| 总砷                                     | 《土壤质量 总汞、总砷、总铅的测定 原子荧光法 第2部分:土壤中总砷的测定》<br>GB/T 22105.2-2008 |  |  |  |  |
| 镉                                      | 《土壤质量 铅、镉的测定石墨炉原子吸收分光光度法》GB/T 17141-1997                    |  |  |  |  |
| 镍                                      | 《土壤和沉积物 铜、锌、铅、镍、铬的测定 火焰原子吸收分光光度法》<br>HJ 491-2019            |  |  |  |  |
| 铜                                      | 《土壤和沉积物 铜、锌、铅、镍、铬的测定 火焰原子吸收分光光度法》<br>HJ 491-2019            |  |  |  |  |
| 铅                                      | 《土壤和沉积物 铜、锌、铅、镍、铬的测定 火焰原子吸收分光光度法》<br>HJ 491-2019            |  |  |  |  |
| 总汞                                     | 《土壤质量 总汞、总砷、总铅的测定 原子荧光法 第1部分:土壤中总汞的测定》<br>GB/T 22105.1-2008 |  |  |  |  |
| 六价铬                                    | 《土壤和沉积物 六价铬的测定 碱溶液提取-火焰原子吸收分光光度法》<br>HJ 1082-2019           |  |  |  |  |
| 挥发性有机物                                 | 《土壤和沉积物 挥发性有机物的测定吹扫捕集/气相色谱-质谱法》HJ 605-2011                  |  |  |  |  |
| 半挥发性有机物                                | 《土壤和沉积物 半挥发性有机物的测定 气相色谱-质谱法》HJ 834-2017                     |  |  |  |  |
| 石油烃(C <sub>10</sub> -C <sub>40</sub> ) | 《土壤和沉积物 石油烃(C10-C40)的测定 气相色谱法》HJ 1021-2019                  |  |  |  |  |

表 8.1-2 土壤检测因子检出限

| PH   无量網 - 26   1,2,3-三氯丙烷   mg/kg   0.0012     2   右袖烃(C <sub>10</sub> -C <sub>40</sub> ) mg/kg   6   27   氯乙烯 mg/kg   0.0010     3   总帥 mg/kg   0.01   28   来 mg/kg   0.0012     4   領 mg/kg   0.01   29   氣本 mg/kg   0.0012     5   六价格 mg/kg   0.5   30   1,2-二氯苯 mg/kg   0.0015     6   領 mg/kg   1   31   1,4-二氯苯 mg/kg   0.0015     7   销 mg/kg   10   32   乙苯 mg/kg   0.0015     8   总汞 mg/kg   0.002   33   苯乙烯 mg/kg   0.0011     9   領 mg/kg   3   34   甲苯 mg/kg   0.0013     10   四氯化碳 mg/kg   0.0013   35   何二甲苯+对二甲苯 mg/kg   0.0012     11   氯仿 mg/kg   0.0011   36   邻二甲苯 mg/kg   0.0012     12   氣甲烷 mg/kg   0.0012   38   来胺 mg/kg   0.09     13   1,1-二氯乙烷 mg/kg   0.0012   38   来胺 mg/kg   0.06     14   1,2-二氯乙烷 mg/kg   0.0013   39   2-氯酚 mg/kg   0.06     15   1,1-二氯乙烯 mg/kg   0.0013   41   来并[a]                                                                                                                                                                                                                                                                                                                                                                                                                                    |    |                                        | 衣 8.1- | 4 工壌   | <u> </u> | 丁位出限          |       |        |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|----------------------------------------|--------|--------|----------|---------------|-------|--------|
| 2         石油烃 (C <sub>10</sub> -C <sub>40</sub> )         mg/kg         6         27         氯乙烯         mg/kg         0.0010           3         意碑         mg/kg         0.01         28         苯         mg/kg         0.0019           4         簡         mg/kg         0.01         29         氣苯         mg/kg         0.0015           5         六价格         mg/kg         0.5         30         1,2-二氣苯         mg/kg         0.0015           6         制         mg/kg         1         31         1,4-二氣苯         mg/kg         0.0015           7         衛         mg/kg         10         32         乙苯         mg/kg         0.0012           8         总汞         mg/kg         0.002         33         苯乙烯         mg/kg         0.0013           9         镍         mg/kg         0.0013         35         向二甲苯+对二甲苯         mg/kg         0.0013           10         m氯化碳         0.0011         36         邻二甲苯         mg/kg         0.0012           11         氯仿         mg/kg         0.0011         36         邻二甲苯         mg/kg         0.0012           12         氣甲烷         mg/kg         0.0012         38                                                                                                          | 序号 | 检测项目                                   | 单位     | 检出限    | 序号       | 检测项目          | 单位    | 检出限    |
| 3   意神   mg/kg   0.01   28   来   mg/kg   0.0019     4   簡   mg/kg   0.01   29   氣米   mg/kg   0.0012     5   六价格   mg/kg   0.5   30   1.2-二氯苯   mg/kg   0.0015     6   簡   mg/kg   1   31   1.4-二氯苯   mg/kg   0.0015     7   怕   mg/kg   10   32   乙米   mg/kg   0.0015     8   息汞   mg/kg   0.002   33   米乙烯   mg/kg   0.0011     9   镍   mg/kg   3   34   甲苯   mg/kg   0.0013     10   四氮化碳   mg/kg   0.0013   35   同二甲未+对二甲米   mg/kg   0.0012     11   氣仿   mg/kg   0.0011   36   邻二甲苯   mg/kg   0.0012     12   氣甲烷   mg/kg   0.0010   37   硝基苯   mg/kg   0.001     13   1,1-二氯乙烷   mg/kg   0.0012   38   苯胺   mg/kg   0.1     14   1,2-二氯乙烷   mg/kg   0.0013   39   2-氯酚   mg/kg   0.1     15   1,1-二氯乙烯   mg/kg   0.0013   39   2-氯酚   mg/kg   0.1     16   顺-1,2-二氯乙烯   mg/kg   0.0013   41   苯并[a]                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1  | рН                                     | 无量纲    | -      | 26       | 1,2,3-三氯丙烷    | mg/kg | 0.0012 |
| 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2  | 石油烃(C <sub>10</sub> ~C <sub>40</sub> ) | mg/kg  | 6      | 27       | 氯乙烯           | mg/kg | 0.0010 |
| 5         六价铬         mg/kg         0.5         30         1,2-二氯苯         mg/kg         0.0015           6         铜         mg/kg         1         31         1,4-二氯苯         mg/kg         0.0012           7         铅         mg/kg         10         32         乙苯         mg/kg         0.0012           8         总汞         mg/kg         0.002         33         苯乙烯         mg/kg         0.0011           9         镍         mg/kg         0.0013         35         间二甲苯+对二甲苯         mg/kg         0.0012           10         四氯化碳         mg/kg         0.0013         35         间二甲苯+对二甲苯         mg/kg         0.0012           11         氣仿         mg/kg         0.0011         36         邻二甲苯         mg/kg         0.0012           12         氣甲烷         mg/kg         0.0012         38         苯胺         mg/kg         0.0012           13         1,1-三氯乙烷         mg/kg         0.0013         39         2-氯酚         mg/kg         0.01           14          1,2-二氯乙烷         mg/kg         0.0013         40         苯并[a]芘         mg/kg         0.1           15         1,1-至氯乙烯         mg/kg <th< th=""><th>3</th><th>总砷</th><th>mg/kg</th><th>0.01</th><th>28</th><th>苯</th><th>mg/kg</th><th>0.0019</th></th<> | 3  | 总砷                                     | mg/kg  | 0.01   | 28       | 苯             | mg/kg | 0.0019 |
| 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 4  | 镉                                      | mg/kg  | 0.01   | 29       | 氯苯            | mg/kg | 0.0012 |
| 7   報   mg/kg   10   32   乙苯   mg/kg   0.0012     8   点汞   mg/kg   0.002   33   苯乙烯   mg/kg   0.0011     9   镍   mg/kg   3   34   甲苯   mg/kg   0.0013     10   四氯化碳   mg/kg   0.0013   35   间二甲苯+对二甲苯   mg/kg   0.0012     11   氯仿   mg/kg   0.0011   36   邻二甲苯   mg/kg   0.0012     12   氯甲烷   mg/kg   0.0010   37   硝基苯   mg/kg   0.09     13   1,1-二氯乙烷   mg/kg   0.0012   38   苯胺   mg/kg   0.01     14   1,2-二氯乙烷   mg/kg   0.0013   39   2-氯酚   mg/kg   0.06     15   1,1-二氯乙烯   mg/kg   0.0010   40   苯并[a]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 5  | 六价铬                                    | mg/kg  | 0.5    | 30       | 1,2-二氯苯       | mg/kg | 0.0015 |
| 8   点汞   mg/kg   0.002   33   苯乙烯   mg/kg   0.0011     9   镍   mg/kg   3   34   甲苯   mg/kg   0.0013     10   四氯化碳   mg/kg   0.0013   35   间二甲苯+对二甲苯   mg/kg   0.0012     11   氯仿   mg/kg   0.0011   36   邻二甲苯   mg/kg   0.0012     12   氯甲烷   mg/kg   0.0010   37   硝基苯   mg/kg   0.09     13   1,1-二氯乙烷   mg/kg   0.0012   38   苯胺   mg/kg   0.1     14   1,2-二氯乙烷   mg/kg   0.0013   39   2-氯酚   mg/kg   0.06     15   1,1-二氯乙烯   mg/kg   0.0010   40   苯并[a]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 6  | 铜                                      | mg/kg  | 1      | 31       | 1,4-二氯苯       | mg/kg | 0.0015 |
| 9       镍       mg/kg       3       34       甲苯       mg/kg       0.0013         10       四氯化碳       mg/kg       0.0013       35       间二甲苯+对二甲苯       mg/kg       0.0012         11       氯仿       mg/kg       0.0011       36       邻二甲苯       mg/kg       0.0012         12       氯甲烷       mg/kg       0.0010       37       硝基苯       mg/kg       0.09         13       1,1-二氯乙烷       mg/kg       0.0012       38       苯胺       mg/kg       0.1         14       1,2-二氯乙烷       mg/kg       0.0013       39       2-氯酚       mg/kg       0.06         15       1,1-二氯乙烷       mg/kg       0.0010       40       苯并[a]蔥       mg/kg       0.1         16       顺-1,2-二氯乙烯       mg/kg       0.0013       41       苯并[a]蓖       mg/kg       0.1         17       反-1,2-二氯乙烯       mg/kg       0.0014       42       苯并[b]荧蒽       mg/kg       0.1         18       二氯甲烷       mg/kg       0.0015       43       苯并[b]荧蒽       mg/kg       0.1         19       1,2-二氯丙烷       mg/kg       0.0012       45       二苯并[a, h]蒽       mg/kg       0.1         20                                                                                                                                                                                              | 7  | 铅                                      | mg/kg  | 10     | 32       | 乙苯            | mg/kg | 0.0012 |
| 10   四氯化碳   mg/kg   0.0013   35   同二甲苯+对二甲苯   mg/kg   0.0012     11   氯仿   mg/kg   0.0011   36   邻二甲苯   mg/kg   0.0012     12   氯甲烷   mg/kg   0.0010   37   硝基苯   mg/kg   0.09     13   1,1-二氯乙烷   mg/kg   0.0012   38   苯胺   mg/kg   0.01     14   1,2-二氯乙烷   mg/kg   0.0013   39   2-氯酚   mg/kg   0.06     15   1,1-二氯乙烯   mg/kg   0.0010   40   苯并[a]蒽   mg/kg   0.1     16   顺-1,2-二氯乙烯   mg/kg   0.0013   41   苯并[a]芘   mg/kg   0.1     17   反-1,2-二氯乙烯   mg/kg   0.0014   42   苯并[b]荧蒽   mg/kg   0.2     18   二氯甲烷   mg/kg   0.0015   43   苯并[b]荧蒽   mg/kg   0.1     19   1,2-二氯丙烷   mg/kg   0.0013   44   萬   mg/kg   0.1     20   1,1,1,2-四氯乙烷   mg/kg   0.0012   45   二苯并[a、h]蒽   mg/kg   0.1     21   1,1,2,2-四氯乙烷   mg/kg   0.0012   46   茚并[1,2,3-cd]芘   mg/kg   0.1     22   四氯乙烯   mg/kg   0.0014   47   茶   mg/kg   0.09     23   1,1,1-三氯乙烷   mg/kg   0.0013   48   三氯苯   mg/kg   0.0002     24   1,1,2-三氯乙烷   mg/kg   0.0012   49   1,3-二氯苯   mg/kg   0.0015                                                                                                                                                                                                                                                                                 | 8  | 总汞                                     | mg/kg  | 0.002  | 33       | 苯乙烯           | mg/kg | 0.0011 |
| 11   氣仿   mg/kg   0.0011   36   邻二甲苯   mg/kg   0.0012     12   氯甲烷   mg/kg   0.0010   37   硝基苯   mg/kg   0.09     13   1,1-二氯乙烷   mg/kg   0.0012   38   苯胺   mg/kg   0.1     14   1,2-二氯乙烷   mg/kg   0.0013   39   2-氯酚   mg/kg   0.06     15   1,1-二氯乙烯   mg/kg   0.0010   40   苯并[a]蒽   mg/kg   0.1     16   顺-1,2-二氯乙烯   mg/kg   0.0013   41   苯并[a]芘   mg/kg   0.1     17   反-1,2-二氯乙烯   mg/kg   0.0014   42   苯并[b]荧蒽   mg/kg   0.2     18   二氯甲烷   mg/kg   0.0015   43   苯并[k]荧蒽   mg/kg   0.1     19   1,2-二氯丙烷   mg/kg   0.0013   44   菌   mg/kg   0.1     20   1,1,1,2-四氯乙烷   mg/kg   0.0012   45   二苯并[a、h]蒽   mg/kg   0.1     21   1,1,2,2-四氯乙烷   mg/kg   0.0012   46   茚并[1,2,3-cd]芘   mg/kg   0.1     22   四氯乙烯   mg/kg   0.0014   47   茶   mg/kg   0.09     23   1,1,1-三氯乙烷   mg/kg   0.0012   49   1,3-二氯苯   mg/kg   0.0015     24   1,1,2-三氯乙烷   mg/kg   0.0012   49   1,3-二氯苯   mg/kg   0.0015                                                                                                                                                                                                                                                                                                                                               | 9  | 镍                                      | mg/kg  | 3      | 34       | 甲苯            | mg/kg | 0.0013 |
| 12   氣甲烷   mg/kg   0.0010   37   硝基苯   mg/kg   0.09     13   1,1-二氯乙烷   mg/kg   0.0012   38   苯胺   mg/kg   0.1     14   1,2-二氯乙烷   mg/kg   0.0013   39   2-氯酚   mg/kg   0.06     15   1,1-二氯乙烯   mg/kg   0.0010   40   苯并[a]蒽   mg/kg   0.1     16   顺-1,2-二氯乙烯   mg/kg   0.0013   41   苯并[a]芘   mg/kg   0.1     17   反-1,2-二氯乙烯   mg/kg   0.0014   42   苯并[b]荧蒽   mg/kg   0.2     18   二氯甲烷   mg/kg   0.0015   43   苯并[k]荧蒽   mg/kg   0.1     19   1,2-二氯丙烷   mg/kg   0.0013   44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 10 | 四氯化碳                                   | mg/kg  | 0.0013 | 35       | 间二甲苯+对二甲苯     | mg/kg | 0.0012 |
| 13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 11 | 氯仿                                     | mg/kg  | 0.0011 | 36       | 邻二甲苯          | mg/kg | 0.0012 |
| 14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 12 | 氯甲烷                                    | mg/kg  | 0.0010 | 37       | 硝基苯           | mg/kg | 0.09   |
| 15   1,1-二氯乙烯   mg/kg   0.0010   40   苯并[a]蔥   mg/kg   0.1     16   顺-1,2-二氯乙烯   mg/kg   0.0013   41   苯并[a]芘   mg/kg   0.1     17   反-1,2-二氯乙烯   mg/kg   0.0014   42   苯并[b]荧蒽   mg/kg   0.2     18   二氯甲烷   mg/kg   0.0015   43   苯并[k]荧蒽   mg/kg   0.1     19   1,2-二氯丙烷   mg/kg   0.0013   44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 13 | 1,1-二氯乙烷                               | mg/kg  | 0.0012 | 38       | 苯胺            | mg/kg | 0.1    |
| 16    順-1,2-二氯乙烯   mg/kg   0.0013   41   苯并[a]芘   mg/kg   0.1     17    反-1,2-二氯乙烯   mg/kg   0.0014   42   苯并[b]荧蒽   mg/kg   0.2     18    二氯甲烷   mg/kg   0.0015   43   苯并[k]荧蒽   mg/kg   0.1     19    1,2-二氯丙烷   mg/kg   0.0013   44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 14 | 1,2-二氯乙烷                               | mg/kg  | 0.0013 | 39       | 2-氯酚          | mg/kg | 0.06   |
| 17   反-1,2-二氯乙烯   mg/kg   0.0014   42   苯并[b]荧蒽   mg/kg   0.2     18   二氯甲烷   mg/kg   0.0015   43   苯并[k]荧蒽   mg/kg   0.1     19   1,2-二氯丙烷   mg/kg   0.0013   44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 15 | 1,1-二氯乙烯                               | mg/kg  | 0.0010 | 40       | 苯并[a]蒽        | mg/kg | 0.1    |
| 18   二氯甲烷   mg/kg   0.0015   43   苯并[k]荧蒽   mg/kg   0.1     19   1,2-二氯丙烷   mg/kg   0.0013   44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 16 | 顺-1,2-二氯乙烯                             | mg/kg  | 0.0013 | 41       | 苯并[a]芘        | mg/kg | 0.1    |
| 19     1,2-二氯丙烷     mg/kg     0.0013     44     菌     mg/kg     0.1       20     1,1,1,2-四氯乙烷     mg/kg     0.0012     45     二苯并[a、h]蒽     mg/kg     0.1       21     1,1,2,2-四氯乙烷     mg/kg     0.0012     46     茚并[1,2,3-cd]芘     mg/kg     0.1       22     四氯乙烯     mg/kg     0.0014     47     萘     mg/kg     0.09       23     1,1,1-三氯乙烷     mg/kg     0.0013     48     三氯苯     mg/kg     0.0002       24     1,1,2-三氯乙烷     mg/kg     0.0012     49     1,3-二氯苯     mg/kg     0.0015                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 17 | 反-1,2-二氯乙烯                             | mg/kg  | 0.0014 | 42       | 苯并[b]荧蒽       | mg/kg | 0.2    |
| 20     1,1,1,2-四氯乙烷     mg/kg     0.0012     45     二苯并[a、h]蒽     mg/kg     0.1       21     1,1,2,2-四氯乙烷     mg/kg     0.0012     46     茚并[1,2,3-cd]芘     mg/kg     0.1       22     四氯乙烯     mg/kg     0.0014     47     萘     mg/kg     0.09       23     1,1,1-三氯乙烷     mg/kg     0.0013     48     三氯苯     mg/kg     0.0002       24     1,1,2-三氯乙烷     mg/kg     0.0012     49     1,3-二氯苯     mg/kg     0.0015                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 18 | 二氯甲烷                                   | mg/kg  | 0.0015 | 43       | 苯并[k]荧蒽       | mg/kg | 0.1    |
| 21     1,1,2,2-四氯乙烷     mg/kg     0.0012     46     茚并[1,2,3-cd]芘     mg/kg     0.1       22     四氯乙烯     mg/kg     0.0014     47     萘     mg/kg     0.09       23     1,1,1-三氯乙烷     mg/kg     0.0013     48     三氯苯     mg/kg     0.0002       24     1,1,2-三氯乙烷     mg/kg     0.0012     49     1,3-二氯苯     mg/kg     0.0015                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 19 | 1,2-二氯丙烷                               | mg/kg  | 0.0013 | 44       | 崫             | mg/kg | 0.1    |
| 22     四氯乙烯     mg/kg     0.0014     47     萘     mg/kg     0.09       23     1,1,1-三氯乙烷     mg/kg     0.0013     48     三氯苯     mg/kg     0.0002       24     1,1,2-三氯乙烷     mg/kg     0.0012     49     1,3-二氯苯     mg/kg     0.0015                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 20 | 1,1,1,2-四氯乙烷                           | mg/kg  | 0.0012 | 45       | 二苯并[a、h]蒽     | mg/kg | 0.1    |
| 23     1,1,1-三氯乙烷     mg/kg     0.0013     48     三氯苯     mg/kg     0.0002       24     1,1,2-三氯乙烷     mg/kg     0.0012     49     1,3-二氯苯     mg/kg     0.0015                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 21 | 1,1,2,2-四氯乙烷                           | mg/kg  | 0.0012 | 46       | 茚并[1,2,3-cd]芘 | mg/kg | 0.1    |
| 24     1,1,2-三氯乙烷     mg/kg     0.0012     49     1,3-二氯苯     mg/kg     0.0015                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 22 | 四氯乙烯                                   | mg/kg  | 0.0014 | 47       | 萘             | mg/kg | 0.09   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 23 | 1,1,1-三氯乙烷                             | mg/kg  | 0.0013 | 48       | 三氯苯           | mg/kg | 0.0002 |
| <b>25</b> 三氯乙烯 mg/kg 0.0012                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 24 | 1,1,2-三氯乙烷                             | mg/kg  | 0.0012 | 49       | 1,3-二氯苯       | mg/kg | 0.0015 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 25 | 三氯乙烯                                   | mg/kg  | 0.0012 | -        | -             | -     | -      |

## 8.1.2 评价标准

土壤测定值按照《土壤环境质量 建设用地土壤污染风险管控标准(试行)》(GB 36600-2018)中第二类用地筛选值进行评价,具体见表 8.1-3。

表 8.1-3 GB36600-2018 土壤污染风险筛选值和管制值 (单位: mg/kg)

| 序号      | 项目           | 第一类用地  |      | 第二类用地 |       |  |  |  |
|---------|--------------|--------|------|-------|-------|--|--|--|
|         |              | 筛选值    | 管制值  | 筛选值   | 管制值   |  |  |  |
| 重金属和无机物 |              |        |      |       |       |  |  |  |
| 1       | 砷            | 20     | 120  | 60    | 140   |  |  |  |
| 2       | 镉            | 20     | 47   | 65    | 172   |  |  |  |
| 3       | 铬 (六价)       | 3.0    | 30   | 5.7   | 78    |  |  |  |
| 4       | 铜            | 2000   | 8000 | 18000 | 36000 |  |  |  |
| 5       | 铅            | 400    | 800  | 800   | 2500  |  |  |  |
| 6       | 汞            | 8      | 33   | 38    | 82    |  |  |  |
| 7       | 镍            | 150    | 600  | 900   | 2000  |  |  |  |
|         |              | 挥发性有机物 | IJ   |       |       |  |  |  |
| 8       | 四氯化碳         | 0.9    | 9    | 2.8   | 36    |  |  |  |
| 9       | 氯仿           | 0.3    | 5    | 0.9   | 10    |  |  |  |
| 10      | 氯甲烷          | 12     | 21   | 37    | 120   |  |  |  |
| 11      | 1,1-二氯乙烷     | 3      | 20   | 9     | 100   |  |  |  |
| 12      | 1,2-二氯乙烷     | 0.52   | 6    | 5     | 21    |  |  |  |
| 13      | 1,1-二氯乙烯     | 12     | 40   | 66    | 200   |  |  |  |
| 14      | 顺-1,2-二氯乙烯   | 66     | 200  | 596   | 2000  |  |  |  |
| 15      | 反-1,2-二氯乙烯   | 10     | 31   | 54    | 163   |  |  |  |
| 16      | 二氯甲烷         | 94     | 300  | 616   | 2000  |  |  |  |
| 17      | 1,2-二氯丙烷     | 1      | 5    | 5     | 47    |  |  |  |
| 18      | 1,1,1,2-四氯乙烷 | 2.6    | 26   | 10    | 100   |  |  |  |
| 19      | 1,1,2,2-四氯乙烷 | 1.6    | 14   | 6.8   | 50    |  |  |  |

| 序号 | 项目            | 第一类用地  |      | 第二类用地 |       |
|----|---------------|--------|------|-------|-------|
|    |               | 筛选值    | 管制值  | 筛选值   | 管制值   |
| 20 | 四氯乙烯          | 11     | 34   | 53    | 183   |
| 21 | 1,1,1-三氯乙烷    | 701    | 840  | 840   | 840   |
| 22 | 1,1,2-三氯乙烷    | 0.6    | 5    | 2.8   | 15    |
| 23 | 三氯乙烯          | 0.7    | 7    | 2.8   | 20    |
| 24 | 1,2,3-三氯丙烷    | 0.05   | 0.5  | 0.5   | 5     |
| 25 | 氯乙烯           | 0.12   | 1.2  | 0.43  | 4.3   |
| 26 | 苯             | 1      | 10   | 4     | 40    |
| 27 | 氯苯            | 68     | 200  | 270   | 1000  |
| 28 | 1,2-二氯苯       | 560    | 560  | 560   | 560   |
| 29 | 1,4-二氯苯       | 5.6    | 56   | 20    | 200   |
| 30 | 乙苯            | 7.2    | 72   | 28    | 280   |
| 31 | 苯乙烯           | 1290   | 1290 | 1290  | 1290  |
| 32 | 甲苯            | 1200   | 1200 | 1200  | 1200  |
| 33 | 间二甲苯+对二甲苯     | 163    | 500  | 570   | 570   |
| 34 | 邻二甲苯          | 222    | 640  | 640   | 640   |
| ·  |               | 半挥发性有机 | 物    |       |       |
| 35 | 硝基苯           | 34     | 190  | 76    | 760   |
| 36 | 苯胺            | 92     | 211  | 260   | 663   |
| 37 | 2-氯酚          | 250    | 500  | 2256  | 4500  |
| 38 | 苯并[a]蒽        | 5.5    | 55   | 15    | 151   |
| 39 | 苯并[a]芘        | 0.55   | 5.5  | 1.5   | 15    |
| 40 | 苯并[b]荧蒽       | 5.5    | 55   | 15    | 151   |
| 41 | 苯并[k]荧蒽       | 55     | 550  | 151   | 1500  |
| 42 | 蔗             | 490    | 4900 | 1293  | 12900 |
| 43 | 二苯并[a,h]蒽     | 0.55   | 5.5  | 1.5   | 15    |
| 44 | 茚并[1,2,3-cd]芘 | 5.5    | 55   | 15    | 151   |
| 45 | 萘             | 25     | 255  | 70    | 700   |

| 序号                     | <br>                                         | 第一类 | 用地   | 第二多  | <b>烂用地</b> |
|------------------------|----------------------------------------------|-----|------|------|------------|
| / <b>1</b> 7 <b>/3</b> | <b>一                                    </b> | 筛选值 | 管制值  | 筛选值  | 管制值        |
| 46                     | 石油烃(C <sub>10</sub> -C <sub>40</sub> )       | 826 | 5000 | 4500 | 9000       |

## 8.1.3 土壤检测结果分析

本次自行检测项目包括 pH 值、石油烃( $C_{10}$ - $C_{40}$ )、重金属、挥发性有机物和半挥发性有机物(包括特征因子氯苯、苯胺、硝基苯、1,2-二氯苯、1,4-二氯苯、三氯苯、1,3-二氯苯),检测结果如下。

表 8.1-4 土壤样品检测结果

|              | 1     | <b>以 0.1-<del>1</del></b> _ | 上來什吅心      | 41/31/2017/ |                                      |    |
|--------------|-------|-----------------------------|------------|-------------|--------------------------------------|----|
| 采样日期         |       |                             | 2025.04.17 |             | GB36600                              |    |
| 监测点位         |       | AT1                         | BT1        | BT2         | - GB36600<br>- 第二类                   | 是否 |
| 采样深度         |       | 0-0.5m                      | 0-0.5m     | 0-0.5m      | ──────────────────────────────────── | 达标 |
| 检测项目         | 单位    |                             | 检测结果       |             | — Nh Ve let                          |    |
| pH 值         | 无量纲   | 8.38                        | 8.27       | 8.24        | -                                    | -  |
| 砷            | mg/kg | 2.18                        | 2.68       | 2.05        | 60mg/kg                              | 是  |
| 镉            | mg/kg | 0.16                        | 0.21       | 0.11        | 65mg/kg                              | 是  |
| 六价铬          | mg/kg | ND                          | ND         | ND          | 5.7mg/kg                             | 是  |
| 铜            | mg/kg | 6                           | 10         | 5           | 18000mg/kg                           | 是  |
| 铅            | mg/kg | 21.8                        | 37.9       | 18.4        | 800mg/kg                             | 是  |
| 汞            | mg/kg | 0.011                       | 0.020      | 0.010       | 38mg/kg                              | 是  |
| 镍            | mg/kg | 38                          | 41         | 40          | 900mg/kg                             | 是  |
| 四氯化碳         | mg/kg | ND                          | ND         | ND          | 2.8mg/kg                             | 是  |
| 氯仿           | mg/kg | ND                          | ND         | ND          | 0.9mg/kg                             | 是  |
| 氯甲烷          | mg/kg | ND                          | ND         | ND          | 37mg/kg                              | 是  |
| 1,1-二氯乙烷     | mg/kg | ND                          | ND         | ND          | 9mg/kg                               | 是  |
| 1,2-二氯乙烷     | mg/kg | ND                          | ND         | ND          | 5mg/kg                               | 是  |
| 1,1-二氯乙烯     | mg/kg | ND                          | ND         | ND          | 66mg/kg                              | 是  |
| 顺-1,2-二氯乙烯   | mg/kg | ND                          | ND         | ND          | 596mg/kg                             | 是  |
| 反-1,2-二氯乙烯   | mg/kg | ND                          | ND         | ND          | 54mg/kg                              | 是  |
| 二氯甲烷         | mg/kg | ND                          | ND         | ND          | 616mg/kg                             | 是  |
| 1,2-二氯丙烷     | mg/kg | ND                          | ND         | ND          | 5mg/kg                               | 是  |
| 1,1,1,2-四氯乙烷 | mg/kg | ND                          | ND         | ND          | 10mg/kg                              | 是  |
| 1,1,2,2-四氯乙烷 | mg/kg | ND                          | ND         | ND          | 6.8mg/kg                             | 是  |
| 四氯乙烯         | mg/kg | ND                          | ND         | ND          | 53mg/kg                              | 是  |
| 1,1,1-三氯乙烷   | mg/kg | ND                          | ND         | ND          | 840mg/kg                             | 是  |
| 1,1,2-三氯乙烷   | mg/kg | ND                          | ND         | ND          | 2.8mg/kg                             | 是  |
| 三氯乙烯         | mg/kg | ND                          | ND         | ND          | 2.8mg/kg                             | 是  |
| 1,2,3-三氯丙烷   | mg/kg | ND                          | ND         | ND          | 0.5mg/kg                             | 是  |

| 氯乙烯                                    | mg/kg | ND | ND | ND | 0.43mg/kg | 是   |
|----------------------------------------|-------|----|----|----|-----------|-----|
| 苯                                      | mg/kg | ND | ND | ND | 4mg/kg    | 是   |
| 氯苯                                     | mg/kg | ND | ND | ND | 270mg/kg  | 是   |
| 1,2-二氯苯                                | mg/kg | ND | ND | ND | 560mg/kg  | 是   |
| 1,4-二氯苯                                | mg/kg | ND | ND | ND | 20mg/kg   | 是   |
| 乙苯                                     | mg/kg | ND | ND | ND | 28mg/kg   | 是   |
| 苯乙烯                                    | mg/kg | ND | ND | ND | 1290mg/kg | 是   |
| 甲苯                                     | mg/kg | ND | ND | ND | 1200mg/kg | 是   |
| 间二甲苯+                                  | mg/kg | ND | ND | ND | 570mg/kg  | 是   |
| 对二甲苯                                   | mg/kg | ND | ND | ND | 370mg/kg  | 上 上 |
| 邻二甲苯                                   | mg/kg | ND | ND | ND | 640mg/kg  | 是   |
| 硝基苯                                    | mg/kg | ND | ND | ND | 76mg/kg   | 是   |
| 苯胺                                     | mg/kg | ND | ND | ND | 260mg/kg  | 是   |
| 2-氯酚                                   | mg/kg | ND | ND | ND | 2256mg/kg | 是   |
| 苯并[a]蒽                                 | mg/kg | ND | ND | ND | 15mg/kg   | 是   |
| 苯并[a]芘                                 | mg/kg | ND | ND | ND | 1.5mg/kg  | 是   |
| 苯并[b]荧蒽                                | mg/kg | ND | ND | ND | 15mg/kg   | 是   |
| 苯并[k]荧蒽                                | mg/kg | ND | ND | ND | 151mg/kg  | 是   |
|                                        | mg/kg | ND | ND | ND | 1293mg/kg | 是   |
| 二苯并[a、h]蒽                              | mg/kg | ND | ND | ND | 15mg/kg   | 是   |
| 茚并[1,2,3-cd]芘                          | mg/kg | ND | ND | ND | 1.5mg/kg  | 是   |
| 萘                                      | mg/kg | ND | ND | ND | 70mg/kg   | 是   |
| 石油烃(C <sub>10</sub> -C <sub>40</sub> ) | mg/kg | 22 | 32 | 60 | 4500mg/kg | 是   |
| 1,3-二氯苯                                | mg/kg | ND | ND | ND | 37mg/kg   | 是   |
| 三氯苯                                    | mg/kg | ND | ND | ND | 58mg/kg   | 是   |

## 表 8.1-4(续) 土壤样品检测结果

| 采样日期    |       |        | 2025   |        |        |            |    |
|---------|-------|--------|--------|--------|--------|------------|----|
| 监测点位    | 监测点位  |        | CT2    | DT1    | DT2    | GB36600    | 是否 |
| 采样深度    | :     | 0-0.5m | 0-0.5m | 0-0.5m | 0-0.5m | 第二类<br>筛选值 | 达标 |
| 检测项目    | 单位    |        | 检测     | 结果     |        |            |    |
| pH 值    | 无量纲   | 8.27   | 8.25   | 8.32   | 8.31   | -          | -  |
| 砷       | mg/kg | 2.10   | 1.79   | 2.34   | 2.28   | 60mg/kg    | 是  |
| 镉       | mg/kg | 0.15   | 0.11   | 0.25   | 0.14   | 65mg/kg    | 是  |
| <br>六价铬 | mg/kg | ND     | ND     | ND     | ND     | 5.7mg/kg   | 是  |
| 铜       | mg/kg | 3      | 5      | 11     | 6      | 18000mg/kg | 是  |
| 铅       | mg/kg | 17.5   | 18.6   | 41.6   | 24.5   | 800mg/kg   | 是  |
| 汞       | mg/kg | 0.012  | 0.011  | 0.021  | 0.013  | 38mg/kg    | 是  |

| 镍             | mg/kg | 28 | 33 | 30 | 34 | 900mg/kg  | 是 |
|---------------|-------|----|----|----|----|-----------|---|
| 四氯化碳          | mg/kg | ND | ND | ND | ND | 2.8mg/kg  | 是 |
| 氯仿            | mg/kg | ND | ND | ND | ND | 0.9mg/kg  | 是 |
| 氯甲烷           | mg/kg | ND | ND | ND | ND | 37mg/kg   | 是 |
| 1,1-二氯乙烷      | mg/kg | ND | ND | ND | ND | 9mg/kg    | 是 |
| 1,2-二氯乙烷      | mg/kg | ND | ND | ND | ND | 5mg/kg    | 是 |
| 1,1-二氯乙烯      | mg/kg | ND | ND | ND | ND | 66mg/kg   | 是 |
| 顺-1,2-二氯乙烯    | mg/kg | ND | ND | ND | ND | 596mg/kg  | 是 |
| 反-1,2-二氯乙烯    | mg/kg | ND | ND | ND | ND | 54mg/kg   | 是 |
| 二氯甲烷          | mg/kg | ND | ND | ND | ND | 616mg/kg  | 是 |
| 1,2-二氯丙烷      | mg/kg | ND | ND | ND | ND | 5mg/kg    | 是 |
| 1,1,1,2-四氯乙烷  | mg/kg | ND | ND | ND | ND | 10mg/kg   | 是 |
| 1,1,2,2-四氯乙烷  | mg/kg | ND | ND | ND | ND | 6.8mg/kg  | 是 |
| 四氯乙烯          | mg/kg | ND | ND | ND | ND | 53mg/kg   | 是 |
| 1,1,1-三氯乙烷    | mg/kg | ND | ND | ND | ND | 840mg/kg  | 是 |
| 1,1,2-三氯乙烷    | mg/kg | ND | ND | ND | ND | 2.8mg/kg  | 是 |
| 三氯乙烯          | mg/kg | ND | ND | ND | ND | 2.8mg/kg  | 是 |
| 1,2,3-三氯丙烷    | mg/kg | ND | ND | ND | ND | 0.5mg/kg  | 是 |
| 氯乙烯           | mg/kg | ND | ND | ND | ND | 0.43mg/kg | 是 |
| 苯             | mg/kg | ND | ND | ND | ND | 4mg/kg    | 是 |
| 氯苯            | mg/kg | ND | ND | ND | ND | 270mg/kg  | 是 |
| 1,2-二氯苯       | mg/kg | ND | ND | ND | ND | 560mg/kg  | 是 |
| 1,4-二氯苯       | mg/kg | ND | ND | ND | ND | 20mg/kg   | 是 |
| 乙苯            | mg/kg | ND | ND | ND | ND | 28mg/kg   | 是 |
| 苯乙烯           | mg/kg | ND | ND | ND | ND | 1290mg/kg | 是 |
| 甲苯            | mg/kg | ND | ND | ND | ND | 1200mg/kg | 是 |
| 间二甲苯+<br>对二甲苯 | mg/kg | ND | ND | ND | ND | 570mg/kg  | 是 |
| 邻二甲苯          | mg/kg | ND | ND | ND | ND | 640mg/kg  | 是 |
| 硝基苯           | mg/kg | ND | ND | ND | ND | 76mg/kg   | 是 |
| 苯胺            | mg/kg | ND | ND | ND | ND | 260mg/kg  | 是 |

| 2-氯酚                                   | mg/kg | ND | ND  | ND  | ND | 2256mg/kg | 是 |
|----------------------------------------|-------|----|-----|-----|----|-----------|---|
| 苯并[a]蒽                                 | mg/kg | ND | ND  | ND  | ND | 15mg/kg   | 是 |
| 苯并[a]芘                                 | mg/kg | ND | 0.1 | 0.1 | ND | 1.5mg/kg  | 是 |
| 苯并[b]荧蒽                                | mg/kg | ND | ND  | ND  | ND | 15mg/kg   | 是 |
| 苯并[k]荧蒽                                | mg/kg | ND | ND  | ND  | ND | 151mg/kg  | 是 |
|                                        | mg/kg | ND | ND  | ND  | ND | 1293mg/kg | 是 |
| 二苯并[a、h]蒽                              | mg/kg | ND | ND  | ND  | ND | 15mg/kg   | 是 |
| 茚并[1,2,3-cd]芘                          | mg/kg | ND | ND  | ND  | ND | 1.5mg/kg  | 是 |
| 萘                                      | mg/kg | ND | ND  | ND  | ND | 70mg/kg   | 是 |
| 石油烃(C <sub>10</sub> -C <sub>40</sub> ) | mg/kg | 16 | 39  | 35  | 54 | 4500mg/kg | 是 |
| 1,3-二氯苯                                | mg/kg | ND | ND  | ND  | ND | 37mg/kg   | 是 |
| 三氯苯                                    | mg/kg | ND | ND  | ND  | ND | 58mg/kg   | 是 |

从表 8.1-4 检测结果可以看出,本次检测所有样品检测结果均符合《土壤环境质量 建设用地土壤污染风险管控标准(试行)(GB36600-2018)表 1 以及《建设用地土壤污染风险筛选值和管制值》(DB4403/T 67-2020)表 2 中第二类用地的筛选值。具体检出情况描述如下:

- (1) 重金属:总砷、镉、铜、铅、总汞、镍在所有样品中均有 检出,六价铬在所有样品中均未检出,检测结果满足《土壤环境质量 建设用地土壤污染风险管控标准(试行)(GB36600-2018)表1中 第二类用地的筛选值。
- (2) 挥发性有机物、半挥发性有机物: 苯并(a)芘在个别样品中有检出,检测结果均符合《土壤环境质量 建设用地土壤污染风险管控标准(试行)(GB36600-2018)表1以及《建设用地土壤污染风险筛选值和管制值》(DB4403/T 67-2020)表2中第二类用地的筛选值;其余挥发性有机物和半挥发性有机物指标在所有样品中均未检出,检出限均小于筛选值,说明检测指标符合评价标准。

本次检测所有土壤样品 pH 的检测结果范围为 8.24~8.38; 石油烃 (C<sub>10</sub>~C<sub>40</sub>) 均有检出,检测结果均符合《土壤环境质量 建设用地土壤污染风险管控标准(试行)(GB36600-2018)第二类用地的筛选值。

#### 8.2 地下水监测结果分析

### 8.2.1 分析方法

地下水样品检测指标及分析方法见表 8.2-1, 地下水检测因子检 出限见表 8.2-2。

表 8.2-1 地下水样品检测指标及分析方法

| 地下水       |                                                     |  |  |  |  |  |  |  |
|-----------|-----------------------------------------------------|--|--|--|--|--|--|--|
| 《地下水环境监测规 | 《地下水环境监测规范》HJ 164-2020                              |  |  |  |  |  |  |  |
| pH 值      | 《水质 pH 值的测定 电极法》HJ1147-2020                         |  |  |  |  |  |  |  |
| 臭和味       | 《生活饮用水标准检验方法 感官性状和物理指标》GB/T 5750.4-2006             |  |  |  |  |  |  |  |
| 肉眼可见物     | 《生活饮用水标准检验方法 感官性状和物理指标》GB/T 5750.4-2006             |  |  |  |  |  |  |  |
| 色度        | 《生活饮用水标准检验方法 感官性状和物理指标》GB/T 5750.4-2006<br>铂-钴标准比色法 |  |  |  |  |  |  |  |
| 浊度        | 《水质 浊度的测定 浊度计法》HJ 1075-2019                         |  |  |  |  |  |  |  |
| 总硬度       | 《水质 钙、镁总量的测定 EDTA 滴定法》GB 7477-1987                  |  |  |  |  |  |  |  |
| 溶解性总固体    | 《生活饮用水标准检验方法 感官性状和物理指标》GB/T 5750.4-2006             |  |  |  |  |  |  |  |
| 硫酸盐       | 《水质 硫酸盐的测定 铬酸钡分光光度法(试行)》 HJ/T 342-2007              |  |  |  |  |  |  |  |
| 氯化物       | 《水质 氯化物的测定 硝酸银滴定法》 GB 11896-1989                    |  |  |  |  |  |  |  |
| 挥发酚       | 《水质 挥发酚的测定 4-氨基安替比林分光光度法》HJ 503-2009                |  |  |  |  |  |  |  |
| 阴离子表面活性剂  | 《水质 阴离子表面活性剂的测定 亚甲蓝分光光度法》GB/T 7494-1987             |  |  |  |  |  |  |  |
| 高锰酸盐指数    | 《水质 高锰酸盐指数的测定》GB/T 11892-1989                       |  |  |  |  |  |  |  |
| 氨氮        | 《水质 氨氮的测定 纳氏试剂分光光度法》HJ 535-2009                     |  |  |  |  |  |  |  |
| 硫化物       | 《水质 硫化物的测定 亚甲基蓝分光光度法》 GB/T 16489-1996               |  |  |  |  |  |  |  |
| 总大肠菌群     | 《水和废水监测分析方法》(第四版 国家环境保护总局 2002年)5.2.5.1             |  |  |  |  |  |  |  |

| 细菌总数                                    | 《水质 细菌总数的测定 平皿计数法》HJ1000-2018                                       |
|-----------------------------------------|---------------------------------------------------------------------|
| 亚硝酸盐氮                                   | 《水质 亚硝酸盐氮的测定 分光光度法》 GB 7493-1987                                    |
| 硝酸盐氮                                    | 《水质 硝酸盐氮的测定 紫外分光光度法(试行)》 HJ/T 346-2007                              |
| 总氰化物                                    | 《水质 氰化物的测定 容量法和分光光度法》HJ 484-2009                                    |
| 氟化物                                     | 《水质 氟化物的测定 离子选择电极法》GB 7484-1987                                     |
| 碘化物                                     | 《地下水质检验方法 淀粉比色法测定碘化物》DZ/T 0064.56-1993                              |
| 铁、锰、镉、铜、 锌、铅、铝、钠                        | 《水质 32 种金属元素的测定 电感耦合等离子体发射光谱法》 HJ 776-2015                          |
| 汞、砷、硒                                   | 《水质 汞、砷、硒、铋和锑的测定 原子荧光法》HJ 694-2014                                  |
| 六价铬                                     | 《水质 六价铬的测定 二苯碳酰二肼分光光度法》GB/T 7467-1987                               |
| 挥发性有机物                                  | 《水质 挥发性有机物的测定 吹扫捕集/气相色谱-质谱法》HJ 639-2012                             |
| 半挥发性有机物                                 | 《水和废水监测分析方法》(第四版 国家环境保护总局 2002 年)4.3.2<br>气相色谱-质谱法(GC-MS)           |
| 石油烃 (C <sub>10</sub> -C <sub>40</sub> ) | 《水质 可萃取性石油烃(C <sub>10</sub> -C <sub>40</sub> )的测定 气相色谱法》HJ 894-2017 |
| 环氧氯丙烷                                   | 《水质 挥发性有机物的测定 吹扫捕集/气相色谱-质谱法》HJ 639-2012                             |
| 多环芳烃                                    | 《水质 多环芳烃的测定 液液萃取和固相萃取高效液相色谱法》<br>HJ 478-2009 只用:液液萃取紫外检测器法          |
| 硝基苯                                     | 《水质 硝基苯类化合物的测定气相色谱-质谱法》HJ 716-2014                                  |
| 苯胺                                      | 《水质 苯胺类化合物的测定 气相色谱-质谱法》HJ 822-2017                                  |
| 2-氯酚                                    | 《水质 酚类化合物的测定 液液萃取/气相色谱法》HJ 676-2013                                 |
| 1,2,4-三氯苯                               | 《水质 氯苯类化合物的测定气相色谱法》HJ 621-2011                                      |
| 1,2,3-三氯苯                               | 《水质 氯苯类化合物的测定气相色谱法》HJ 621-2011                                      |
| 1,3,5-三氯苯                               | 《水质 氯苯类化合物的测定气相色谱法》HJ 621-2011                                      |
| 氯甲烷                                     | 《水质 挥发性有机物的测定 吹扫捕集/气相色谱-质谱法》HJ 639-2012                             |
| 3,3′-二氯联苯胺                              | 《半挥发性有机物的测定 气相色谱/质谱法》GLLS-3-H002-2018                               |
|                                         |                                                                     |

# 表 8.2-2 地下水检测因子检出限

### 地下水

| 序号 | 检测项目 | 单位  | 检出限 | 序号 | 检测项目 | 单位   | 检出限   |
|----|------|-----|-----|----|------|------|-------|
| 1  | pH 值 | 无量纲 | -   | 27 | 总氰化物 | mg/L | 0.004 |

| 地下水 | <b>`</b> |       |        |    |            |      |                      |
|-----|----------|-------|--------|----|------------|------|----------------------|
| 序号  | 检测项目     | 单位    | 检出限    | 序号 | 检测项目       | 单位   | 检出限                  |
| 2   | 温度       | °C    | -      | 28 | 氟化物        | mg/L | 0.05                 |
| 3   | 溶解氧      | mg/L  | -      | 29 | 碘化物        | mg/L | 0.0025               |
| 4   | 电导率      | μS/cm | -      | 30 | 汞          | mg/L | 0.00004              |
| 5   | 氧化还原电位   | mV    | -      | 31 | 砷          | mg/L | 0.0003               |
| 6   | 臭和味      | -     | -      | 32 | 硒          | mg/L | 0.0004               |
| 7   | 肉眼可见物    | -     | -      | 33 | 镉          | mg/L | 0.005                |
| 8   | 色度       | 度     | 5      | 34 | 六价铬        | mg/L | 0.004                |
| 9   | 浊度       | NTU   | 0.3    | 35 | 铅          | mg/L | 0.07                 |
| 10  | 总硬度      | mg/L  | 5.0    | 36 | 三氯甲烷       | mg/L | 0.0014               |
| 11  | 溶解性总固体   | mg/L  | 4      | 37 | 四氯化碳       | mg/L | 0.0015               |
| 12  | 硫酸盐      | mg/L  | 10     | 38 | 苯          | mg/L | 0.0014               |
| 13  | 氯化物      | mg/L  | 2.0    | 39 | 甲苯         | mg/L | 0.0014               |
| 14  | 铁        | mg/L  | 0.02   | 40 | 氯苯         | mg/L | 0.0010               |
| 15  | 锰        | mg/L  | 0.004  | 41 | 苯胺         | mg/L | 0.000057             |
| 16  | 铜        | mg/L  | 0.006  | 42 | 硝基苯        | mg/L | 0.0019               |
| 17  | 锌        | mg/L  | 0.004  | 43 | 1,2-二氯苯    | mg/L | 0.0008               |
| 18  | 铝        | mg/L  | 0.07   | 44 | 1,3-二氯苯    | mg/L | 0.0012               |
| 19  | 挥发酚      | mg/L  | 0.0003 | 45 | 1,4-二氯苯    | mg/L | 0.0008               |
| 20  | 阴离子表面活性剂 | mg/L  | 0.05   | 46 | 三氯苯        | mg/L | 0.0010               |
| 21  | 高锰酸盐指数   | mg/L  | 0.5    | 47 | 3,3′-二氯联苯胺 | mg/L | 1.0×10 <sup>-2</sup> |
| 22  | 氨氮       | mg/L  | 0.025  | 48 | 环氧氯丙烷      | mg/L | 5×10 <sup>-3</sup>   |
| 23  | 硫化物      | mg/L  | 0.005  | 49 | 1,2,4-三氯苯  | mg/L | 8×10 <sup>-5</sup>   |
| 24  | 钠        | mg/L  | 0.12   | 50 | 1,2,3-三氯苯  | mg/L | 8×10 <sup>-5</sup>   |
| 25  | 亚硝酸盐氮    | mg/L  | 0.003  | 51 | 1,3,5-三氯苯  | mg/L | 1.1×10 <sup>-4</sup> |
| 26  | 硝酸盐氮     | mg/L  | 0.08   | -  | -          | -    | -                    |

8.2.2 评价标准

地下水检测结果按照《地下水质量标准》(GB/T14848-2017)中

IV类水限值以及《上海市建设用地地下水污染风险管控筛选值补充指标》(沪环土[2020]62号文,附件5,2020年3月26日)中的第一类用地筛选值进行评价,具体见表8.2-3。

表 8.2-3 《地下水质量标准》(GB/T14848-2017)

|    | \# /A   FI → | <b>34</b> D. |          |         | 标准    |                   |               |
|----|--------------|--------------|----------|---------|-------|-------------------|---------------|
| 序号 | 评价因子         | 单位           | I类       | II类     | III类  | IV类               | V类            |
|    |              | 感            | 言性状及一    | 般化学指标   |       |                   |               |
| 1  | 色            | 度            | 5        | 5       | 15    | 25                | >25           |
| 2  | 嗅和味          | -            | 无        | 无       | 无     | 无                 | 有             |
| 3  | 浑浊度          | NTU          | 3        | 3       | 3     | 10                | >10           |
| 4  | 肉眼可见物        | -            | 无        | 无       | 无     | 无                 | 有             |
| 5  | рН           | 无量纲          |          | 6.5~8.5 |       | 5.5~6.5,<br>8.5~9 | <5.5,<br>>9.0 |
| 6  | 总硬度          | mg/L         | 150      | 300     | 450   | 650               | >650          |
| 7  | 溶解性<br>总固体   | mg/L         | 300      | 500     | 1000  | 2000              | >2000         |
| 8  | 硫酸盐          | mg/L         | 50       | 150     | 250   | 350               | >350          |
| 9  | 氯化物          | mg/L         | 50       | 150     | 250   | 350               | >350          |
| 10 | 铁            | mg/L         | 0.1      | 0.2     | 0.3   | 2.0               | >2.0          |
| 11 | 锰            | mg/L         | 0.05     | 0.05    | 0.1   | 1.5               | >1.5          |
| 12 | 铜            | mg/L         | 0.01     | 0.05    | 1.0   | 1.5               | >1.5          |
| 13 | 锌            | mg/L         | 0.05     | 0.5     | 1.00  | 5.00              | >5.00         |
| 14 | 铝            | mg/L         | 0.01     | 0.05    | 0.20  | 0.50              | >0.50         |
| 15 | 挥发性酚类        | mg/L         | 0.001    | 0.001   | 0.002 | 0.01              | >0.01         |
| 16 | 阴离子表面<br>活性剂 | mg/L         | 不得<br>检出 | 0.1     | 0.3   | 0.3               | >0.3          |
| 17 | 耗氧量          | mg/L         | 1.0      | 2.0     | 3.0   | 10                | >10.0         |
| 18 | 氨氮           | mg/L         | 0.02     | 0.10    | 0.50  | 1.5               | >1.5          |
| 19 | 硫化物          | mg/L         | 0.005    | 0.01    | 0.02  | 0.10              | >0.10         |
| 20 | 钠            | mg/L         | 100      | 150     | 200   | 400               | >400          |

|    | \ (A   E       | N. D. |        |        | 标准    |       |        |
|----|----------------|-------|--------|--------|-------|-------|--------|
| 序号 | 评价因子           | 单位    | I类     | II类    | III类  | IV类   | V类     |
|    |                |       | 毒理学    | 指标     |       |       |        |
| 21 | 亚硝酸盐           | mg/L  | 0.01   | 0.10   | 1.00  | 4.80  | >4.80  |
| 22 | 硝酸盐            | mg/L  | 2.0    | 5.0    | 20    | 30    | >30    |
| 23 | 氰化物            | mg/L  | 0.001  | 0.01   | 0.05  | 0.1   | >0.1   |
| 24 | 氟化物            | mg/L  | 1.0    | 1.0    | 1.0   | 2.0   | >2.0   |
| 25 | 碘化物            | mg/L  | 0.04   | 0.04   | 0.08  | 0.50  | >0.50  |
| 26 | 汞              | mg/L  | 0.0001 | 0.0001 | 0.001 | 0.002 | >0.002 |
| 27 | 砷              | mg/L  | 0.001  | 0.001  | 0.01  | 0.05  | >0.05  |
| 28 | 硒              | mg/L  | 0.01   | 0.01   | 0.01  | 0.1   | >0.1   |
| 29 | 镉              | mg/L  | 0.0001 | 0.001  | 0.005 | 0.01  | >0.01  |
| 30 | 铬 (六价)         | mg/L  | 0.005  | 0.01   | 0.05  | 0.1   | >0.1   |
| 31 | 铅              | mg/L  | 0.005  | 0.005  | 0.01  | 0.1   | >0.1   |
| 32 | 三氯甲烷           | μg/L  | 0.5    | 6      | 60    | 300   | >300   |
| 33 | 四氯化碳           | μg/L  | 0.5    | 0.5    | 2.0   | 50.0  | >50.0  |
| 34 | 苯              | μg/L  | 0.5    | 1.0    | 10.0  | 120   | >120   |
| 35 | 甲苯             | μg/L  | 0.5    | 140    | 700   | 1400  | >1400  |
| 36 | 1,2-二氯苯        | μg/L  | 0.5    | 200    | 1000  | 2000  | >2000  |
| 37 | 1,4-二氯苯        | μg/L  | 0.5    | 30.0   | 300   | 600   | >600   |
| 38 | 三氯苯            | μg/L  | 0.5    | 4.0    | 20.0  | 180   | >180   |
| 39 | 1,2-二氯乙烷       | μg/L  | 0.5    | 3.0    | 30    | 40    | >40    |
| 40 | 1,1-二氯乙烯       | μg/L  | 0.5    | 3.0    | 30    | 60    | >60    |
| 41 | 二氯甲烷           | μg/L  | 1      | 2      | 20    | 500   | >500   |
| 42 | 1,2-二氯丙烷       | μg/L  | 0.5    | 0.5    | 5     | 60    | >60    |
| 43 | 四氯乙烯           | μg/L  | 0.5    | 4.0    | 40    | 300   | >300   |
| 44 | 1,1,1-三氯乙<br>烷 | μg/L  | 0.5    | 3      | 30    | 60    | >60    |
| 45 | 1,1,2-三氯乙<br>烷 | μg/L  | 0.5    | 5      | 50    | 60    | >60    |
| 46 | 三氯乙烯           | μg/L  | 0.5    | 7      | 70    | 210   | >210   |

| <u> </u> | ᇔᄊᄪᅔ    | 36 D. |       |       | 标准   | 值    |       |
|----------|---------|-------|-------|-------|------|------|-------|
| 序号       | 评价因子    | 単位    | I类    | II类   | III类 | IV类  | V类    |
| 47       | 氯乙烯     | μg/L  | 0.5   | 0.5   | 5    | 90   | >90   |
| 48       | 乙苯      | μg/L  | 0.5   | 30    | 300  | 600  | >600  |
| 49       | 苯乙烯     | μg/L  | 0.5   | 2     | 20   | 40   | >40   |
| 50       | 甲苯      | μg/L  | 0.5   | 140   | 700  | 1400 | >1400 |
| 51       | 二甲苯     | μg/L  | 0.5   | 100   | 500  | 1000 | >1000 |
| 52       | 萘       | μg/L  | 1     | 10    | 100  | 600  | >600  |
| 53       | 苯并[a]芘  | μg/L  | 0.002 | 0.002 | 0.01 | 0.5  | >0.5  |
| 54       | 苯并[b]荧蒽 | μg/L  | 0.1   | 0.4   | 4    | 8    | >8    |

表 8.2-3(续) 上海市建设用地地下水污染风险管控筛选值补充指标

|    | 评价因子          | 单位   | 第一类用地筛选值 | 第二类用地筛选值 |
|----|---------------|------|----------|----------|
| 1  | 苯胺            | mg/L | 2.2      | 7.4      |
| 2  | 硝基苯           | mg/L | 2        | 2        |
| 3  | 2-氯酚          | mg/L | 2.2      | 2.2      |
| 4  | 苯并[a]蒽        | mg/L | 0.0048   | 0.0048   |
| 5  | 薜             | mg/L | 0.48     | 0.48     |
| 6  | 茚并[1,2,3-cd]芘 | mg/L | 0.0048   | 0.0048   |
| 7  | 二苯并[a,h]蒽     | mg/L | 0.00048  | 0.00048  |
| 8  | 苯并[k]荧蒽       | mg/L | 0.048    | 0.048    |
| 9  | 1,1,1,2-四氯乙烷  | mg/L | 0.14     | 0.9      |
| 10 | 1,1,2,2-四氯乙烷  | mg/L | 0.04     | 0.6      |
| 11 | 1,2,3-三氯丙烷    | mg/L | 0.0012   | 0.6      |
| 12 | 1,1-二氯乙烷      | mg/L | 0.23     | 1.2      |

## 8.2.3 地下水检测结果分析

本次自行监测共设置采样并 5 个(包括对照点),样品检测项目为《地下水质量标准》(GB/T14848-2017)表 1 中除微生物指标、放射性指标除外的 35 项常规指标,以及特征因子 pH、石油烃( $C_{10}$ - $C_{40}$ )、

氯苯、苯胺、硝基苯、1,2-二氯苯、1,3-二氯苯、1,4-二氯苯、三氯苯等,地下水检测结果如下。

表 8.2-4 地下水监测结果表

|                |          |                | N.             | 3.2-7 JE   //\     |                    |                |                |                   |     |
|----------------|----------|----------------|----------------|--------------------|--------------------|----------------|----------------|-------------------|-----|
|                | 监测点<br>位 | GW1            | GW9            | GW11               | GW12               | GW4            | GW5            |                   |     |
| 2025.04.17     | 经纬度      | N: 32.090521°  | N: 32.089639°  | N: 32.089688°      | N: 32.090715°      | N: 32.089590°  | N: 32.089360°  | 177米小氏            | 日不出 |
|                | 红纬及      | E: 120.518662° | E: 120.518448° | E: 120.519993°     | E: 120.519728°     | E: 120.518932° | E: 120.518862° | IV类水质             | 是否达 |
| 样品编号           | •        | 2500448D1-001  | 2500448D9-001  | 2500448D11-00<br>1 | 2500448D12-00<br>1 | 2500448D4-001  | 2500448D5-001  | 限值                | 标   |
| 样品状态           | ;        | 无色透明           | 无色透明           | 无色透明               | 无色透明               | 无色透明           | 无色透明           |                   |     |
| pH 值           | 无量纲      | 7.9            | 7.6            | 7.7                | 7.4                | 7.3            | 7.5            | 5.5~6.5,<br>8.5~9 | 是   |
| 水温             | °C       | 12.6           | 12.6           | 12.6               | 12.6               | 12.6           | 12.6           | -                 | -   |
| 臭和味            | -        | 无              | 无              | 无                  | 无                  | 无              | 无              | 无                 | 是   |
| 肉眼可见物          | -        | 无              | 无              | 无                  | 无                  | 无              | 无              | 无                 | 是   |
| 浊度             | NTU      | 33             | 28             | 29                 | 31                 | 32             | 34             | 10                | 否   |
| 色度             | 度        | 5L             | 5L             | 5L                 | 5L                 | 5L             | 5L             | 25                | 是   |
| 钙、镁总量<br>(总硬度) | mg/L     | 188            | 160            | 540                | 642                | 168            | 201            | 650               | 是   |
| 溶解性总固体         | mg/L     | 430            | 408            | 661                | 743                | 380            | 419            | 2000              | 是   |
| 硫酸盐            | mg/L     | 12             | 18             | 30                 | 19                 | 18             | 14             | 350               | 是   |
| 氯化物            | mg/L     | 49             | 38             | 85                 | 56                 | 54             | 46             | 350               | 是   |
| 挥发酚            | mg/L     | 0.0003L        | 0.0003L        | 0.0003L            | 0.0003L            | 0.0003L        | 0.0003L        | 0.01              | 是   |
| 阴离子表面活性<br>剂   | mg/L     | 0.05L          | 0.05L          | 0.05L              | 0.05L              | 0.05L          | 0.05L          | 0.3               | 是   |

| 高锰酸盐指数 | mg/L | 3.8                   | 2.9                   | 4.4                   | 7.7                   | 5.0                   | 3.6                   | 10   | 是 |
|--------|------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|------|---|
| 氨氮     | mg/L | 0.984                 | 0.165                 | 1.44                  | 1.39                  | 1.35                  | 0.445                 | 1.5  | 是 |
| 硫化物    | mg/L | 0.003L                | 0.003L                | 0.003L                | 0.003L                | 0.003L                | 0.003L                | 0.10 | 是 |
| 亚硝酸盐氮  | mg/L | 0.063                 | 0.014                 | 0.007                 | 0.006                 | 0.101                 | 0.109                 | 4.80 | 是 |
| 硝酸盐氮   | mg/L | 0.276                 | 0.393                 | 0.531                 | 0.240                 | 0.326                 | 0.427                 | 30   | 是 |
| 总氰化物   | mg/L | 0.004L                | 0.004L                | 0.004L                | 0.004L                | 0.004L                | 0.004L                | 0.1  | 是 |
| 氟化物    | mg/L | 0.66                  | 0.36                  | 0.39                  | 0.33                  | 0.52                  | 0.42                  | 2.0  | 是 |
| 碘化物    | mg/L | 0.006L                | 0.006L                | 0.006L                | 0.006L                | 0.006L                | 0.006L                | 0.50 | 是 |
| 六价铬    | mg/L | 0.004L                | 0.004L                | 0.004L                | 0.004L                | 0.004L                | 0.004L                | 0.1  | 是 |
| 铁      | mg/L | 1.62                  | 0.57                  | 1.52                  | 1.47                  | 1.67                  | 0.27                  | 2.0  | 是 |
| 锰      | mg/L | 0.208                 | 0.004L                | 0.510                 | 1.19                  | 0.158                 | 0.087                 | 1.5  | 是 |
| 锌      | mg/L | 0.185                 | 4.24×10 <sup>-3</sup> | 1.40×10 <sup>-2</sup> | 3.26×10 <sup>-3</sup> | 6.67×10 <sup>-2</sup> | 7.66×10 <sup>-2</sup> | 5.00 | 是 |
| 铝      | mg/L | 0.45                  | 0.40                  | 0.07L                 | 0.07L                 | 0.45                  | 0.22                  | 0.50 | 是 |
| 钠      | mg/L | 20.0                  | 18.0                  | 22.1                  | 47.6                  | 16.8                  | 16.4                  | 400  | 是 |
| 硒      | mg/L | 4×10 <sup>-4</sup> L  | 4×10-4L               | 4×10-4L               | 4×10 <sup>-4</sup> L  | 4×10-4L               | 4×10-4L               | 0.1  | 是 |
| 镍      | mg/L | 8.28×10 <sup>-3</sup> | 2.15×10 <sup>-3</sup> | 1.58×10 <sup>-3</sup> | 1.96×10 <sup>-3</sup> | 7.41×10 <sup>-3</sup> | 2.76×10 <sup>-3</sup> | 0.10 | 是 |
| 砷      | mg/L | 9.4×10 <sup>-3</sup>  | 1.8×10 <sup>-3</sup>  | 2.03×10 <sup>-2</sup> | 2.98×10 <sup>-2</sup> | 6.5×10 <sup>-3</sup>  | 1.5×10 <sup>-3</sup>  | 0.05 | 是 |
| 镉      | mg/L | 1.5×10 <sup>-4</sup>  | 5×10 <sup>-5</sup> L  | 5×10 <sup>-5</sup> L  | 5×10 <sup>-5</sup> L  | 2.0×10 <sup>-4</sup>  | 5×10 <sup>-5</sup> L  | 0.01 | 是 |
| 铜      | mg/L | 1.36×10 <sup>-2</sup> | 2.73×10 <sup>-3</sup> | 6.0×10 <sup>-4</sup>  | 3.3×10 <sup>-4</sup>  | 1.15×10 <sup>-2</sup> | 1.37×10 <sup>-3</sup> | 1.5  | 是 |

| 铅            | mg/L | 1.0×10 <sup>-2</sup>   | 2×10 <sup>-3</sup>     | 1×10 <sup>-3</sup>     | 1×10 <sup>-3</sup>     | 1.5×10 <sup>-2</sup>   | 3×10 <sup>-3</sup>     | 0.1   | 是 |
|--------------|------|------------------------|------------------------|------------------------|------------------------|------------------------|------------------------|-------|---|
| 汞            | mg/L | 4×10 <sup>-5</sup> L   | 1.1×10 <sup>-4</sup>   | 4×10 <sup>-5</sup> L   | 4×10 <sup>-5</sup> L   | 4×10 <sup>-5</sup> L   | 1.0×10 <sup>-4</sup>   | 0.002 | 是 |
| 四氯化碳         | mg/L | 1.5×10 <sup>-3</sup> L | 0.05  | 是 |
| 三氯甲烷         | mg/L | 1.4×10 <sup>-3</sup> L | 2.3×10 <sup>-3</sup>   | 1.4×10 <sup>-3</sup> L | 1.4×10 <sup>-3</sup> L | 1.4×10 <sup>-3</sup> L | 1.4×10 <sup>-3</sup> L | 0.3   | 是 |
| 1,1-二氯乙烷     | mg/L | 1.2×10 <sup>-3</sup> L | 1.2   | 是 |
| 1,2-二氯乙烷     | mg/L | 1.4×10 <sup>-3</sup> L | 2.80×10 <sup>-2</sup>  | 0.04  | 是 |
| 1,1-二氯乙烯     | mg/L | 1.2×10 <sup>-3</sup> L | 0.06  | 是 |
| 顺-1,2-二氯乙烯   | mg/L | 1.2×10 <sup>-3</sup> L | -     | - |
| 反-1,2-二氯乙烯   | mg/L | 1.1×10 <sup>-3</sup> L | -     | - |
| 二氯甲烷         | mg/L | 1×10 <sup>-3</sup> L   | 0.5   | 是 |
| 1,2-二氯丙烷     | mg/L | 1.2×10 <sup>-3</sup> L | 0.06  | 是 |
| 1,1,1,2-四氯乙烷 | mg/L | 1.5×10 <sup>-3</sup> L | 0.9   | 是 |
| 1,1,2,2-四氯乙烷 | mg/L | 1.1×10 <sup>-3</sup> L | 0.6   | 是 |
| 四氯乙烯         | mg/L | 1.2×10 <sup>-3</sup> L | 0.3   | 是 |
| 1,1,1-三氯乙烷   | mg/L | 1.4×10 <sup>-3</sup> L | 4     | 是 |
| 1,1,2-三氯乙烷   | mg/L | 1.5×10 <sup>-3</sup> L | 0.06  | 是 |
| 三氯乙烯         | mg/L | 1.2×10 <sup>-3</sup> L | 0.21  | 是 |
| 1,2,3-三氯丙烷   | mg/L | 1.2×10 <sup>-3</sup> L | 0.6   | 是 |
| 氯乙烯          | mg/L | 1.5×10 <sup>-3</sup> L | 0.09  | 是 |

| 苯             | mg/L | 1.4×10 <sup>-3</sup> L | 1.4×10 <sup>-3</sup> L | 1.44×10 <sup>-2</sup>  | 1.4×10 <sup>-3</sup> L | 2.5×10 <sup>-3</sup>   | 1.4×10 <sup>-3</sup> L | 0.12    | 是 |
|---------------|------|------------------------|------------------------|------------------------|------------------------|------------------------|------------------------|---------|---|
| 氯苯            | mg/L | 1×10-3L                | 1×10 <sup>-3</sup> L   | 7.34×10 <sup>-2</sup>  | 1×10-3L                | 1.67×10 <sup>-2</sup>  | 1×10 <sup>-3</sup> L   | 1.4     | 是 |
| 1,2-二氯苯       | mg/L | 8×10 <sup>-4</sup> L   | 8×10 <sup>-4</sup> L   | 8×10 <sup>-4</sup> L   | 8×10 <sup>-4</sup> L   | 2.96×10 <sup>-2</sup>  | 8×10 <sup>-4</sup> L   | 24      | 是 |
| 1,4-二氯苯       | mg/L | 8×10 <sup>-4</sup> L   | 8×10 <sup>-4</sup> L   | 8×10 <sup>-4</sup> L   | 8×10 <sup>-4</sup> L   | 0.226                  | 8×10 <sup>-4</sup> L   | 0.6     | 是 |
| 乙苯            | mg/L | 8×10 <sup>-4</sup> L   | 0.6     | 是 |
| 苯乙烯           | mg/L | 6×10 <sup>-4</sup> L   | 6×10 <sup>-4</sup> L   | 6×10 <sup>-4</sup> L   | 6×10-4L                | 6×10 <sup>-4</sup> L   | 6×10 <sup>-4</sup> L   | 0.04    | 是 |
| 甲苯            | mg/L | 1.4×10 <sup>-3</sup> L | 1.4     | 是 |
| 间二甲苯+对二甲苯     | mg/L | 2.2×10 <sup>-3</sup> L | 2.2×10 <sup>-3</sup> L | 2.6×10 <sup>-3</sup>   | 2.2×10 <sup>-3</sup> L | 2.2×10 <sup>-3</sup> L | 2.2×10 <sup>-3</sup> L | 1.0     | 是 |
| 邻二甲苯          | mg/L | 1.4×10 <sup>-3</sup> L | 1.8×10 <sup>-3</sup>   | 1.4×10 <sup>-3</sup> L | 1.4×10 <sup>-3</sup> L | 1.4×10 <sup>-3</sup> L | 1.4×10 <sup>-3</sup> L |         | 是 |
| 硝基苯           | mg/L | 4×10 <sup>-5</sup> L   | 4×10 <sup>-5</sup> L   | 4×10 <sup>-5</sup> L   | 4×10 <sup>-5</sup> L   | 2.0×10 <sup>-4</sup>   | 4×10-5L                | 2       | 是 |
| 苯胺            | mg/L | 5.7×10 <sup>-5</sup> L | 3.4×10 <sup>-4</sup>   | 7.4     | 是 |
| 2-氯酚          | mg/L | 3.5×10 <sup>-3</sup>   | 2.4×10 <sup>-3</sup>   | 2.3×10 <sup>-3</sup>   | 2.5×10 <sup>-3</sup>   | 3.0×10 <sup>-3</sup>   | 2.8×10 <sup>-3</sup>   | 2.2     | 是 |
| 苯并[a]蒽        | mg/L | 1.2×10 <sup>-5</sup> L | 0.0048  | 是 |
| 苯并[a]芘        | mg/L | 4×10 <sup>-6</sup> L   | 4×10-6L                | 0.0005  | 是 |
| 苯并[b]荧蒽       | mg/L | 1.0×10 <sup>-5</sup>   | 4×10 <sup>-6</sup> L   | 4×10 <sup>-6</sup> L   | 4×10 <sup>-6</sup> L   | 4×10 <sup>-6</sup> L   | 4×10-6L                | 0.008   | 是 |
| 苯并[k]荧蒽       | mg/L | 4×10-6L                | 4×10 <sup>-6</sup> L   | 4×10 <sup>-6</sup> L   | 4×10 <sup>-6</sup> L   | 4×10 <sup>-6</sup> L   | 4×10-6L                | 0.048   | 是 |
| 崫             | mg/L | 5×10 <sup>-6</sup> L   | 0.48    | 是 |
| 二苯并[a,h]蒽     | mg/L | 1.7×10 <sup>-5</sup>   | 1.07×10 <sup>-4</sup>  | 2.37×10 <sup>-4</sup>  | 7.3×10 <sup>-5</sup>   | 3.9×10 <sup>-5</sup>   | 5.2×10 <sup>-5</sup>   | 0.00048 | 是 |
| 茚并[1,2,3-cd]芘 | mg/L | 5×10 <sup>-6</sup> L   | 5×10-6L                | 0.0048  | 是 |
| 萘             | mg/L | 1.2×10 <sup>-5</sup> L | 5.70×10 <sup>-4</sup>  | 1.2×10 <sup>-5</sup> L | 1.2×10 <sup>-5</sup> L | 9.6×10 <sup>-5</sup>   | 1.2×10 <sup>-5</sup> L | 0.6     | 是 |

|         | 【性石油烃<br>10-C40) | mg/L | 0.09                   | 0.04                   | 0.06                   | 0.01                   | 0.39                   | 1.16                   | 1.2 | 是 |
|---------|------------------|------|------------------------|------------------------|------------------------|------------------------|------------------------|------------------------|-----|---|
|         | 1,2,4-三<br>氯苯    | mg/L | 8×10 <sup>-5</sup> L   |     | 是 |
| 苯 第 1,3 | 1,2,3-三<br>氯苯    | mg/L | 8×10 <sup>-5</sup> L   | 180 | 是 |
|         | 1,3,5-三<br>氯苯    | mg/L | 1.1×10 <sup>-4</sup> L |     | 是 |
| 源       | 甲烷               | mg/L | 1.3×10 <sup>-4</sup> L | -   | - |
| 3,3-二   | 氯联苯胺             | mg/L | 1.0×10 <sup>-2</sup> L | -   | - |
| 3,4-二   | 氯硝基苯             | mg/L | 定性未检出                  | 定性未检出                  | 定性未检出                  | 定性未检出                  | 定性未检出                  | 定性未检出                  | -   | - |
| 2,4-二   | 氯苯乙酮             | mg/L | 定性未检出                  | 定性未检出                  | 定性未检出                  | 定性未检出                  | 定性未检出                  | 定性未检出                  | -   | - |
| 2,5-二   | 氯硝基苯             | mg/L | 定性未检出                  | 定性未检出                  | 定性未检出                  | 定性未检出                  | 定性未检出                  | 定性未检出                  | -   | - |
| 邻硝基     | 对氯苯胺             | mg/L | 定性未检出                  | 定性未检出                  | 定性未检出                  | 定性未检出                  | 定性未检出                  | 定性未检出                  | -   | - |

# 表 8.2-4(续) 地下水监测结果表

| 2025.04.15 | 监测点<br>位 | GW6            | GW7            | GW8            | GW3                            | GW2                            |                |      |
|------------|----------|----------------|----------------|----------------|--------------------------------|--------------------------------|----------------|------|
| 2025.04.17 | 经纬度      | N: 32.089262°  | N: 32.090161°  | N: 32.089089°  | N: 32.089970°                  | N: 32.090495°                  |                |      |
|            |          | E: 120.519514° | E: 120.519914° | E: 120.519857° | E: 120.518388°                 | E: 120.519523°                 | IV类水质限值        | 是否达标 |
| 样品编号       |          | 2500448D6-001  | 2500448D7-001  | 2500448D8-001  | 2500448D3-001<br>2500448D3-002 | 2500448D2-001<br>2500448D2-002 |                |      |
| 样品状态       |          | 无色透明           | 无色透明           | 无色透明           | 无色透明                           | 无色透明                           |                |      |
| pH 值       | 无量纲      | 7.4            | 7.2            | 7.4            | 7.5                            | 7.2                            | 5.5~6.5, 8.5~9 | 是    |

| 水温             | °C   | 12.6    | 12.6    | 12.6    | 12.6    | 12.6    | -    | - |
|----------------|------|---------|---------|---------|---------|---------|------|---|
| 臭和味            | -    | 无       | 无       | 无       | 无       | 无       | 无    | 是 |
| 肉眼可见物          | -    | 无       | 无       | 无       | 无       | 无       | 无    | 是 |
| 浊度             | NTU  | 39      | 35      | 37      | 30      | 36      | 10   | 否 |
| 色度             | 度    | 5L      | 5L      | 5L      | 5L      | 5L      | 25   | 是 |
| 钙、镁总量<br>(总硬度) | mg/L | 397     | 638     | 163     | 150     | 157     | 650  | 是 |
| 溶解性总固体         | mg/L | 549     | 704     | 357     | 313     | 326     | 2000 | 是 |
| 硫酸盐            | mg/L | 11      | 20      | 14      | 14      | 16      | 350  | 是 |
| 氯化物            | mg/L | 85      | 16      | 36      | 38      | 38      | 350  | 是 |
| 挥发酚            | mg/L | 0.0003L | 0.0003L | 0.0003L | 0.0003L | 0.0003L | 0.01 | 是 |
| 阴离子表面活性剂       | mg/L | 0.05L   | 0.05L   | 0.05L   | 0.05L   | 0.05L   | 0.3  | 是 |
| 高锰酸盐指数         | mg/L | 6.6     | 9.3     | 3.3     | 3.8     | 2.8     | 10   | 是 |
| 氨氮             | mg/L | 1.46    | 1.40    | 0.107   | 0.354   | 0.112   | 1.5  | 是 |
| 硫化物            | mg/L | 0.003L  | 0.003L  | 0.003L  | 0.003L  | 0.003L  | 0.10 | 是 |
| 亚硝酸盐氮          | mg/L | 0.109   | 0.005   | 0.008   | 0.018   | 0.006   | 4.80 | 是 |
| 硝酸盐氮           | mg/L | 0.304   | 0.224   | 0.257   | 0.189   | 0.380   | 30   | 是 |
| 总氰化物           | mg/L | 0.004L  | 0.004L  | 0.004L  | 0.004L  | 0.004L  | 0.1  | 是 |
| 氟化物            | mg/L | 0.36    | 0.34    | 0.32    | 0.46    | 0.47    | 2.0  | 是 |
| 碘化物            | mg/L | 0.006L  | 0.006L  | 0.006L  | 0.006L  | 0.006L  | 0.50 | 是 |

| 六价铬           | mg/L | 0.004L                 | 0.004L                 | 0.004L                 | 0.004L                 | 0.004L                 | 0.1   | 是 |
|---------------|------|------------------------|------------------------|------------------------|------------------------|------------------------|-------|---|
| 铁             | mg/L | 1.66                   | 1.66                   | 0.12                   | 0.85                   | 0.13                   | 2.0   | 是 |
| <del></del>   | mg/L | 0.408                  | 0.965                  | 0.004L                 | 0.011                  | 0.004L                 | 1.5   | 是 |
| 锌             | mg/L | 1.64×10 <sup>-2</sup>  | 1.65×10 <sup>-3</sup>  | 2.08×10 <sup>-2</sup>  | 6.72×10 <sup>-2</sup>  | 1.26×10 <sup>-2</sup>  | 5.00  | 是 |
| 铝             | mg/L | 0.45                   | 0.07L                  | 0.11                   | 0.46                   | 0.07L                  | 0.50  | 是 |
| 钠             | mg/L | 39.2                   | 13.7                   | 14.7                   | 17.8                   | 16.0                   | 400   | 是 |
|               | mg/L | 4×10 <sup>-4</sup> L   | 0.1   | 是 |
| <del></del> 镍 | mg/L | 3.85×10 <sup>-3</sup>  | 2.70×10 <sup>-3</sup>  | 1.65×10 <sup>-3</sup>  | 2.47×10 <sup>-3</sup>  | 1.65×10 <sup>-3</sup>  | 0.10  | 是 |
| 砷             | mg/L | 4.7×10 <sup>-3</sup>   | 2.25×10 <sup>-2</sup>  | 1.8×10 <sup>-3</sup>   | 2.0×10 <sup>-3</sup>   | 2.3×10 <sup>-3</sup>   | 0.05  | 是 |
| 镉             | mg/L | 5×10 <sup>-5</sup> L   | 0.01  | 是 |
| 铜             | mg/L | 1.82×10 <sup>-3</sup>  | 4.2×10 <sup>-4</sup>   | 8.2×10 <sup>-4</sup>   | 3.06×10 <sup>-3</sup>  | 1.01×10 <sup>-3</sup>  | 1.5   | 是 |
| 铅             | mg/L | 2×10 <sup>-3</sup>     | 1×10 <sup>-3</sup>     | 2×10 <sup>-3</sup>     | 3×10 <sup>-3</sup>     | 1×10 <sup>-3</sup> L   | 0.1   | 是 |
| 汞             | mg/L | 4×10-5L                | 4×10 <sup>-5</sup> L   | 4×10 <sup>-5</sup> L   | 4×10 <sup>-5</sup> L   | 4×10 <sup>-5</sup> L   | 0.002 | 是 |
| 四氯化碳          | mg/L | 1.5×10 <sup>-3</sup> L | 0.05  | 是 |
| 三氯甲烷          | mg/L | 1.4×10 <sup>-3</sup> L | 1.4×10 <sup>-3</sup> L | 1.4×10 <sup>-3</sup>   | 4.3×10 <sup>-3</sup>   | 1.4×10 <sup>-3</sup> L | 0.3   | 是 |
| 1,1-二氯乙烷      | mg/L | 1.2×10 <sup>-3</sup> L | 1.2   | 是 |
| 1,2-二氯乙烷      | mg/L | 1.4×10 <sup>-3</sup> L | 0.04  | 是 |
| 1,1-二氯乙烯      | mg/L | 1.2×10 <sup>-3</sup> L | 0.06  | 是 |
| 顺-1,2-二氯乙烯    | mg/L | 1.2×10 <sup>-3</sup> L | -     | - |

| 反-1,2-二氯乙烯   | mg/L | 1.1×10 <sup>-3</sup> L | -    | - |
|--------------|------|------------------------|------------------------|------------------------|------------------------|------------------------|------|---|
| 二氯甲烷         | mg/L | 1×10-3L                | 1×10-3L                | 1×10 <sup>-3</sup> L   | 1.0×10 <sup>-3</sup> L | 1.0×10 <sup>-3</sup> L | 0.5  | 是 |
| 1,2-二氯丙烷     | mg/L | 1.2×10 <sup>-3</sup> L | 0.06 | 是 |
| 1,1,1,2-四氯乙烷 | mg/L | 1.5×10 <sup>-3</sup> L | 0.9  | 是 |
| 1,1,2,2-四氯乙烷 | mg/L | 1.1×10 <sup>-3</sup> L | 0.6  | 是 |
| 四氯乙烯         | mg/L | 1.2×10 <sup>-3</sup> L | 0.3  | 是 |
| 1,1,1-三氯乙烷   | mg/L | 1.4×10 <sup>-3</sup> L | 4    | 是 |
| 1,1,2-三氯乙烷   | mg/L | 1.5×10 <sup>-3</sup> L | 0.06 | 是 |
| 三氯乙烯         | mg/L | 1.2×10 <sup>-3</sup> L | 0.21 | 是 |
| 1,2,3-三氯丙烷   | mg/L | 1.2×10 <sup>-3</sup> L | 0.6  | 是 |
| 氯乙烯          | mg/L | 1.5×10 <sup>-3</sup> L | 0.09 | 是 |
| 苯            | mg/L | 9.09×10 <sup>-2</sup>  | 1.4×10 <sup>-3</sup> L | 1.4×10 <sup>-3</sup> L | 1.4×10 <sup>-3</sup> L | 1.4×10 <sup>-3</sup> L | 0.12 | 是 |
| 氯苯           | mg/L | 0.145                  | 1×10-3L                | 1×10 <sup>-3</sup> L   | 1.0×10 <sup>-3</sup> L | 1.0×10 <sup>-3</sup> L | 1.4  | 是 |
| 1,2-二氯苯      | mg/L | 3.05×10 <sup>-2</sup>  | 9×10 <sup>-4</sup>     | 8×10 <sup>-4</sup> L   | 8×10 <sup>-4</sup> L   | 8×10 <sup>-4</sup> L   | 24   | 是 |
| 1,4-二氯苯      | mg/L | 0.114                  | 4.4×10 <sup>-3</sup>   | 8×10 <sup>-4</sup> L   | 8×10 <sup>-4</sup> L   | 8×10 <sup>-4</sup> L   | 0.6  | 是 |
| 乙苯           | mg/L | 8×10-4L                | 8×10 <sup>-4</sup> L   | 8×10 <sup>-4</sup> L   | 8×10 <sup>-4</sup> L   | 8×10 <sup>-4</sup> L   | 0.6  | 是 |
| 苯乙烯          | mg/L | 6×10 <sup>-4</sup> L   | 0.04 | 是 |
| 甲苯           | mg/L | 1.4×10 <sup>-3</sup> L | 1.4  | 是 |

| 间二                                      | 甲苯+对二甲苯                                       | mg/L | 2.2×10 <sup>-3</sup> L | 1.0     | 是 |
|-----------------------------------------|-----------------------------------------------|------|------------------------|------------------------|------------------------|------------------------|------------------------|---------|---|
| Ļ                                       | 邻二甲苯                                          | mg/L | 1.4×10 <sup>-3</sup> L |         |   |
|                                         | 硝基苯                                           | mg/L | 4×10 <sup>-5</sup> L   | 4×10 <sup>-5</sup> L   | 4×10 <sup>-5</sup> L   | 1.5×10 <sup>-3</sup> L | 1.5×10 <sup>-3</sup> L | 2       | 是 |
|                                         | 苯胺                                            | mg/L | 5.2×10 <sup>-4</sup>   | 5.7×10 <sup>-5</sup> L | 5.7×10 <sup>-5</sup> L | 1.5×10 <sup>-3</sup> L | 1.5×10 <sup>-3</sup> L | 7.4     | 是 |
|                                         | 2-氯酚                                          | mg/L | 4.2×10 <sup>-3</sup>   | 2.4×10 <sup>-3</sup>   | 2.8×10 <sup>-3</sup>   | 1.4×10 <sup>-3</sup> L | 1.4×10 <sup>-3</sup> L | 2.2     | 是 |
| =                                       | 苯并[a]蒽                                        | mg/L | 1.2×10 <sup>-5</sup> L | 1.2×10 <sup>-5</sup> L | 1.2×10 <sup>-5</sup> L | 1.2×10 <sup>-3</sup> L | 1.2×10 <sup>-3</sup> L | 0.0048  | 是 |
| ======================================= | 苯并[a]芘                                        | mg/L | 4×10 <sup>-6</sup> L   | 4×10 <sup>-6</sup> L   | 4×10 <sup>-6</sup> L   | 5.0×10 <sup>-3</sup> L | 5.0×10 <sup>-3</sup> L | 0.0005  | 是 |
| 苯                                       | 并[b]荧蒽                                        | mg/L | 4×10 <sup>-6</sup> L   | 4×10 <sup>-6</sup> L   | 4×10 <sup>-6</sup> L   | 1.5×10 <sup>-3</sup> L | 1.5×10 <sup>-3</sup> L | 0.008   | 是 |
| 苯                                       | 并[k]荧蒽                                        | mg/L | 4×10 <sup>-6</sup> L   | 4×10 <sup>-6</sup> L   | 4×10 <sup>-6</sup> L   | 4.8×10 <sup>-3</sup>   | 3.9×10 <sup>-3</sup>   | 0.048   | 是 |
|                                         | 崫                                             | mg/L | 5×10 <sup>-6</sup> L   | 5×10 <sup>-6</sup> L   | 5×10 <sup>-6</sup> L   | 1.4×10 <sup>-3</sup> L | 1.4×10 <sup>-3</sup> L | 0.48    | 是 |
|                                         | 苯并[a,h]蒽                                      | mg/L | 3.13×10 <sup>-4</sup>  | 4.7×10 <sup>-5</sup>   | 3.03×10 <sup>-4</sup>  | 1.4×10 <sup>-3</sup> L | 1.4×10 <sup>-3</sup> L | 0.00048 | 是 |
| 市并                                      | F[1,2,3-cd]芘                                  | mg/L | 5×10 <sup>-6</sup> L   | 5×10 <sup>-6</sup> L   | 5×10 <sup>-6</sup> L   | 1.4×10 <sup>-3</sup> L | 1.4×10 <sup>-3</sup> L | 0.0048  | 是 |
|                                         | 萘                                             | mg/L | 5.56×10 <sup>-4</sup>  | 1.2×10 <sup>-5</sup> L | 5.57×10 <sup>-4</sup>  | 6.4×10 <sup>-3</sup>   | 5.6×10 <sup>-3</sup>   | 0.6     | 是 |
|                                         | E取性石油烃<br>(C <sub>10</sub> -C <sub>40</sub> ) | mg/L | 0.50                   | 0.01L                  | 0.03                   | 1.2×10 <sup>-3</sup> L | 1.2×10 <sup>-3</sup> L | 1.2     | 是 |
|                                         | 1,2,4-三氯苯                                     | mg/L | 8×10 <sup>-5</sup> L   | 8×10 <sup>-5</sup> L   | 8×10 <sup>-5</sup> L   | 6×10 <sup>-4</sup> L   | 6×10 <sup>-4</sup> L   |         |   |
| 三氯苯                                     | 1,2,3-三氯苯                                     | mg/L | 8×10 <sup>-5</sup> L   | 8×10 <sup>-5</sup> L   | 8×10 <sup>-5</sup> L   | 7×10 <sup>-4</sup> L   | 7×10 <sup>-4</sup> L   | 180     | 是 |
|                                         | 1,3,5-三氯苯                                     | mg/L | 1.1×10 <sup>-4</sup> L | 1.1×10 <sup>-4</sup> L | 1.1×10 <sup>-4</sup> L | 8×10 <sup>-4</sup> L   | 8×10 <sup>-4</sup> L   |         |   |
|                                         | 氯甲烷                                           | mg/L | 1.3×10 <sup>-4</sup> L | -       | 是 |
| 3,3-                                    | 二氯联苯胺                                         | mg/L | 1.0×10 <sup>-2</sup> L | -       | 是 |

| 3,4-二氯硝基苯 | mg/L | 定性未检出 | 定性未检出 | 定性未检出 | 定性未检出 | 定性未检出 | - | 是 |
|-----------|------|-------|-------|-------|-------|-------|---|---|
| 2,4-二氯苯乙酮 | mg/L | 定性未检出 | 定性未检出 | 定性未检出 | 定性未检出 | 定性未检出 | - | - |
| 2,5-二氯硝基苯 | mg/L | 定性未检出 | 定性未检出 | 定性未检出 | 定性未检出 | 定性未检出 | - | - |
| 邻硝基对氯苯胺   | mg/L | 定性未检出 | 定性未检出 | 定性未检出 | 定性未检出 | 定性未检出 | - | - |

# 表 8.2-4(续) 地下水监测结果表

|                                       | ı        | ı              | l                              | ı              | l              | ı              | 1                              |          |     |
|---------------------------------------|----------|----------------|--------------------------------|----------------|----------------|----------------|--------------------------------|----------|-----|
|                                       | 监测点位     | GW1            | GW2                            | GW3            | GW6            | GW9            | GW4                            |          |     |
| 2025.07.21                            | 经纬度      | N: 32.090521°  | N: 32.090495°                  | N: 32.089970°  | N: 32.089206°  | N: 32.089639°  | N: 32.089590°                  |          |     |
|                                       | 江川又      | E: 120.518662° | E: 120.519523°                 | E: 120.518388° | E: 120.519451° | E: 120.518899° | E: 120.518932°                 | IV类水质限   | 是否  |
| 样品编号                                  | <u> </u> | 2500899D1-001  | 2500899D2-001<br>2500899D2-002 | 2500899D3-001  | 2500899D6-001  | 2500899D9-001  | 2500899D4-001<br>2500899D4-002 | 值        | 达标  |
| 样品状态                                  | \$       | 浅黄透明           | 无色透明                           | 浅黄透明           | 浅黄透明           | 浅黄透明           | 浅黄透明                           |          |     |
| <br>pH 值                              | 无量纲      | 7.1            | 7.6                            | 7.4            | 7.7            | 7.2            | 7.4                            | 5.5~6.5, | 是   |
| ————————————————————————————————————— | 九里初      | /.1            | 7.0                            | 7.4            | 7.7            | 7.2            | 7.4                            | 8.5~9    | 上 上 |
| 水温                                    | °C       | 14.8           | 14.8                           | 14.8           | 14.8           | 14.8           | 21.6                           | 1        |     |
| 臭和味                                   | -        | 无              | 无                              | 无              | 无              | 无              | 无                              | 无        | 是   |
| 肉眼可见物                                 | -        | 无              | 无                              | 无              | 无              | 无              | 无                              | 无        | 是   |
| 浊度                                    | NTU      | 47             | 35                             | 42             | 48             | 51             | 36                             | 10       | 否   |
| 色度                                    | 度        | 10             | 5L                             | 5              | 5              | 5              | 10                             | 25       | 是   |
| 钙、镁总量<br>(总硬度)                        | mg/L     | 180            | 158                            | 168            | 272            | 148            | 204                            | 650      | 是   |
| 溶解性总固体                                | mg/L     | 367            | 385                            | 397            | 496            | 388            | 552                            | 2000     | 是   |

|              | mg/L | 14                   | 12                    | 23                    | 10                    | 22                    | 83                    | 350  | 是 |
|--------------|------|----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|------|---|
| 氯化物          | mg/L | 32                   | 30                    | 31                    | 57                    | 30                    | 54                    | 350  | 是 |
|              | mg/L | 0.0003L              | 0.0003L               | 0.0003L               | 0.0003L               | 0.0003L               | 0.0003L               | 0.01 | 是 |
| 阴离子表面活性<br>剂 | mg/L | 0.05L                | 0.05L                 | 0.05L                 | 0.05L                 | 0.05L                 | 0.05L                 | 0.3  | 是 |
| 高锰酸盐指数       | mg/L | 1.4                  | 2.0                   | 1.5                   | 1.9                   | 2.0                   | 3.7                   | 10   | 是 |
|              | mg/L | 0.518                | 0.110                 | 0.372                 | 1.42                  | 0.270                 | 1.44                  | 1.5  | 是 |
| 硫化物          | mg/L | 0.003L               | 0.003L                | 0.003L                | 0.003L                | 0.003L                | 0.003L                | 0.10 | 是 |
| 亚硝酸盐氮        | mg/L | 0.078                | 0.015                 | 0.020                 | 0.024                 | 0.020                 | 0.024                 | 4.80 | 是 |
| 硝酸盐氮         | mg/L | 0.250                | 0.654                 | 0.488                 | 0.236                 | 0.362                 | 0.632                 | 30   | 是 |
| 总氰化物         | mg/L | 0.004L               | 0.004L                | 0.004L                | 0.004L                | 0.004L                | 0.004L                | 0.1  | 是 |
| 氟化物          | mg/L | 0.50                 | 0.35                  | 0.30                  | 0.28                  | 0.20                  | 0.60                  | 2.0  | 是 |
| 碘化物          | mg/L | 0.006L               | 0.006L                | 0.006L                | 0.006L                | 0.006L                | 0.006L                | 0.50 | 是 |
| 六价铬          | mg/L | 0.004L               | 0.004L                | 0.004L                | 0.004L                | 0.004L                | 0.004L                | 0.1  | 是 |
| 铁            | mg/L | 0.48                 | 0.06                  | 1.42                  | 0.62                  | 0.94                  | 1.11                  | 2.0  | 是 |
| 锰            | mg/L | 0.124                | 0.004L                | 0.013                 | 0.237                 | 0.007                 | 0.148                 | 1.5  | 是 |
| 锌            | mg/L | 0.243                | 8.16×10 <sup>-2</sup> | 8.48×10 <sup>-2</sup> | 2.17×10 <sup>-2</sup> | 5.74×10 <sup>-2</sup> | 1.76×10 <sup>-2</sup> | 5.00 | 是 |
| 铝            | mg/L | 0.49                 | 0.07L                 | 0.48                  | 0.48                  | 0.47                  | 0.12                  | 0.50 | 是 |
| 钠            | mg/L | 13.2                 | 13.2                  | 12.8                  | 22.0                  | 13.0                  | 16.5                  | 400  | 是 |
| 硒            | mg/L | 4×10 <sup>-4</sup> L | 4×10 <sup>-4</sup> L  | 4×10 <sup>-4</sup> L  | 4×10 <sup>-4</sup> L  | 4×10 <sup>-4</sup> L  | 4×10 <sup>-4</sup> L  | 0.1  | 是 |

| 镍            | mg/L | 3.35×10 <sup>-3</sup>  | 1.66×10 <sup>-3</sup>  | 2.33×10 <sup>-3</sup>  | 2.56×10 <sup>-3</sup>  | 1.97×10 <sup>-3</sup>  | 3.41×10 <sup>-3</sup>  | 0.10  | 是 |
|--------------|------|------------------------|------------------------|------------------------|------------------------|------------------------|------------------------|-------|---|
| 砷            | mg/L | 5.2×10 <sup>-3</sup>   | 1.6×10 <sup>-3</sup>   | 2.5×10 <sup>-3</sup>   | 6.6×10 <sup>-3</sup>   | 1.8×10 <sup>-3</sup>   | 6.5×10 <sup>-3</sup>   | 0.05  | 是 |
| 镉            | mg/L | 9×10 <sup>-5</sup>     | 5×10 <sup>-5</sup> L   | 8×10 <sup>-5</sup>     | 1.38×10 <sup>-3</sup>  | 5×10 <sup>-5</sup> L   | 6×10 <sup>-5</sup>     | 0.01  | 是 |
| 铜            | mg/L | 5.93×10 <sup>-3</sup>  | 1.48×10 <sup>-3</sup>  | 3.16×10 <sup>-3</sup>  | 4.59×10 <sup>-3</sup>  | 3.29×10 <sup>-3</sup>  | 5.78×10 <sup>-3</sup>  | 1.5   | 是 |
| 铅            | mg/L | 1.2×10 <sup>-2</sup>   | 1×10 <sup>-3</sup>     | 3×10 <sup>-3</sup>     | 1×10 <sup>-3</sup> L   | 1×10 <sup>-3</sup> L   | 4×10 <sup>-3</sup>     | 0.1   | 是 |
| 汞            | mg/L | 4×10 <sup>-5</sup> L   | 0.002 | 是 |
| 四氯化碳         | mg/L | 1.5×10 <sup>-3</sup> L | 0.05  | 是 |
| 三氯甲烷         | mg/L | 4.0×10 <sup>-3</sup>   | 1.4×10 <sup>-3</sup>   | 7.3×10 <sup>-3</sup>   | 1.4×10 <sup>-3</sup> L | 3.3×10 <sup>-3</sup>   | 4.8×10 <sup>-3</sup>   | 0.3   | 是 |
| 1,1-二氯乙烷     | mg/L | 1.2×10 <sup>-3</sup> L | 1.2   | 是 |
| 1,2-二氯乙烷     | mg/L | 1.4×10 <sup>-3</sup> L | 0.04  | 是 |
| 1,1-二氯乙烯     | mg/L | 1.2×10 <sup>-3</sup> L | 0.06  | 是 |
| 顺-1,2-二氯乙烯   | mg/L | 1.2×10 <sup>-3</sup> L | -     | - |
| 反-1,2-二氯乙烯   | mg/L | 1.1×10 <sup>-3</sup> L | 1     | - |
| 二氯甲烷         | mg/L | 1×10 <sup>-3</sup> L   | 0.5   | 是 |
| 1,2-二氯丙烷     | mg/L | 1.2×10 <sup>-3</sup> L | 0.06  | 是 |
| 1,1,1,2-四氯乙烷 | mg/L | 1.5×10 <sup>-3</sup> L | 0.9   | 是 |
| 1,1,2,2-四氯乙烷 | mg/L | 1.1×10 <sup>-3</sup> L | 0.6   | 是 |
| 四氯乙烯         | mg/L | 1.2×10 <sup>-3</sup> L | 0.3   | 是 |
| 1,1,1-三氯乙烷   | mg/L | 1.4×10 <sup>-3</sup> L | 4     | 是 |

| 1,1,2-三氯乙烷    | mg/L | 1.5×10 <sup>-3</sup> L | 0.06   | 是 |
|---------------|------|------------------------|------------------------|------------------------|------------------------|------------------------|------------------------|--------|---|
| 三氯乙烯          | mg/L | 1.2×10 <sup>-3</sup> L | 0.21   | 是 |
| 1,2,3-三氯丙烷    | mg/L | 1.2×10 <sup>-3</sup> L | 0.6    | 是 |
| 氯乙烯           | mg/L | 1.5×10 <sup>-3</sup> L | 0.09   | 是 |
| 苯             | mg/L | 1.4×10 <sup>-3</sup> L | 1.4×10 <sup>-3</sup> L | 1.4×10 <sup>-3</sup> L | 6.65×10 <sup>-2</sup>  | 1.4×10 <sup>-3</sup> L | 1.4×10 <sup>-3</sup> L | 0.12   | 是 |
| 氯苯            | mg/L | 1×10-3L                | 1×10-3L                | 1×10 <sup>-3</sup> L   | 0.191                  | 1×10 <sup>-3</sup> L   | 4.2×10 <sup>-3</sup>   | 1.4    | 是 |
| 1,2-二氯苯       | mg/L | 8×10 <sup>-4</sup> L   | 8×10 <sup>-4</sup> L   | 8.96×10 <sup>-2</sup>  | 1.6×10 <sup>-3</sup>   | 6.77×10 <sup>-2</sup>  | 9.9×10 <sup>-3</sup>   | 24     | 是 |
| 1,4-二氯苯       | mg/L | 8×10 <sup>-4</sup> L   | 8×10 <sup>-4</sup> L   | 8×10 <sup>-4</sup> L   | 1.22×10 <sup>-2</sup>  | 1.58×10 <sup>-2</sup>  | 5.0×10 <sup>-3</sup>   | 0.6    | 是 |
| 乙苯            | mg/L | 8×10 <sup>-4</sup> L   | 0.6    | 是 |
| 苯乙烯           | mg/L | 6×10 <sup>-4</sup> L   | 0.04   | 是 |
| 甲苯            | mg/L | 1.4×10 <sup>-3</sup> L | 1.4    | 是 |
| 间二甲苯+对二<br>甲苯 | mg/L | 2.2×10 <sup>-3</sup> L | 1.0    | 是 |
| 邻二甲苯          | mg/L | 1.4×10 <sup>-3</sup> L |        |   |
| 硝基苯           | mg/L | 4×10 <sup>-5</sup> L   | 4×10-5L                | 4×10 <sup>-5</sup> L   | 4×10 <sup>-5</sup> L   | 4×10 <sup>-5</sup> L   | 4×10 <sup>-5</sup> L   | 2      | 是 |
| 苯胺            | mg/L | 5.7×10 <sup>-5</sup> L | 7.4    | 是 |
| 2-氯酚          | mg/L | 1.1×10 <sup>-3</sup> L | 2.2    | 是 |
| 苯并[a]蒽        | mg/L | 1.2×10 <sup>-5</sup> L | 0.0048 | 是 |
| 苯并[a]芘        | mg/L | 4×10 <sup>-6</sup> L   | 0.0005 | 是 |
| 苯并[b]荧蒽       | mg/L | 4×10 <sup>-6</sup> L   | 4×10-6L                | 7.6×10 <sup>-5</sup>   | 4×10-6L                | 4×10 <sup>-6</sup> L   | 4×10 <sup>-6</sup> L   | 0.008  | 是 |
| 苯并[k]荧蒽       | mg/L | 4×10 <sup>-6</sup> L   | 0.048  | 是 |

| 崫                                             | mg/L | 5×10 <sup>-6</sup> L   | 5×10 <sup>-6</sup> L   | 7.8×10 <sup>-5</sup>   | 5×10 <sup>-6</sup> L   | 5×10 <sup>-6</sup> L   | 5×10 <sup>-6</sup> L   | 0.48    | 是 |
|-----------------------------------------------|------|------------------------|------------------------|------------------------|------------------------|------------------------|------------------------|---------|---|
| 二苯并[a,h]蒽                                     | mg/L | 1.33×10 <sup>-4</sup>  | 1.06×10 <sup>-4</sup>  | 3×10-6L                | 3×10-6L                | 3×10-6L                | 3×10-6L                | 0.00048 | 是 |
| 茚并[1,2,3-cd]芘                                 | mg/L | 5×10 <sup>-6</sup> L   | 0.0048  | 是 |
| 萘                                             | mg/L | 1.2×10 <sup>-5</sup> L | 0.6     | 是 |
| 可萃取性石油<br>(C <sub>10</sub> -C <sub>40</sub> ) | mg/L | 0.03                   | 0.01L                  | 0.08                   | 0.09                   | 0.03                   | 0.58                   | 1.2     | 是 |
| 3,3-二氯联苯胺                                     | mg/L | 3×10 <sup>-4</sup> L   | -       | - |
| 三 1,2,4-三氯苯                                   | mg/L | 8×10 <sup>-5</sup> L   |         |   |
| 氯 1,2,3-三氯苯                                   | mg/L | 8×10 <sup>-5</sup> L   | 180     | 是 |
| 苯 1,3,5-三氯苯                                   | mg/L | 1.1×10 <sup>-4</sup> L |         |   |
| 氯甲烷                                           | mg/L | 1.3×10 <sup>-4</sup> L | -       | - |
| 3,4-二氯硝基苯                                     | mg/L | 定性未检出                  | 定性未检出                  | 定性未检出                  | 定性未检出                  | 定性未检出                  | 定性未检出                  | -       | - |
| 2,4-二氯苯乙酮                                     | mg/L | 定性未检出                  | 定性未检出                  | 定性未检出                  | 定性未检出                  | 定性未检出                  | 定性未检出                  | -       | - |
| 2,5-二氯硝基苯                                     | mg/L | 定性未检出                  | 定性未检出                  | 定性未检出                  | 定性未检出                  | 定性未检出                  | 定性未检出                  | -       | - |
| 邻硝基对氯苯胺                                       | mg/L | 定性未检出                  | 定性未检出                  | 定性未检出                  | 定性未检出                  | 定性未检出                  | 定性未检出                  | -       | - |

#### 表 8.2-4(续) 地下水监测结果表

|            | 监测点位         | GW5            | GW7            | GW8            | GW10           | GW11           | GW12           |         |       |
|------------|--------------|----------------|----------------|----------------|----------------|----------------|----------------|---------|-------|
| 2025.07.21 | 经纬度          | N: 32.089360°  | N: 32.090100°  | N: 32.088789°  | N: 32.517776°  | N: 32.089705°  | N: 32.090653°  |         | 日不斗   |
|            | 红印及          | E: 120.518862° | E: 120.519908° | E: 120.519930° | E: 120.502133° | E: 120.519999° | E: 120.519847° | IV类水质限值 | 是否达   |
| 样品编号       | <del>-</del> | 2500899D5-001  | 2500899D7-001  | 2500899D8-001  | 2500899D10-001 | 2500899D11-001 | 2500899D12-001 |         | 标<br> |
| 样品状态       | \$           | 浅黄透明           | 无色透明           | 无色透明           | 浅灰不透明          | 浅灰不透明          | 无色透明           |         |       |

| pH 值           | 无量纲  | 7.6     | 7.5     | 7.7     | 7.4     | 7.6     | 7.2     | 5.5~6.5, 8.5~ | 是 |
|----------------|------|---------|---------|---------|---------|---------|---------|---------------|---|
| 水温             | °C   | 21.6    | 14.8    | 14.8    | 14.8    | 14.8    | 14.8    | -             | - |
| 臭和味            | -    | 无       | 无       | 无       | 有       | 有       | 无       | 无             | 是 |
| 肉眼可见物          | -    | 无       | 无       | 无       | 有       | 有       | 无       | 无             | 是 |
| 浊度             | NTU  | 40      | 32      | 36      | 47      | 55      | 31      | 10            | 否 |
| 色度             | 度    | 5       | 5L      | 5L      | 10      | 10      | 5L      | 25            | 是 |
| 钙、镁总量<br>(总硬度) | mg/L | 310     | 411     | 161     | 242     | 570     | 644     | 650           | 是 |
| 溶解性总固体         | mg/L | 638     | 959     | 378     | 914     | 681     | 787     | 2000          | 是 |
| 硫酸盐            | mg/L | 88      | 25      | 24      | 34      | 69      | 19      | 350           | 是 |
| 氯化物            | mg/L | 125     | 235     | 30      | 196     | 30      | 64      | 350           | 是 |
| 挥发酚            | mg/L | 0.0003L | 0.0003L | 0.0003L | 0.0003L | 0.0003L | 0.0003L | 0.01          | 是 |
| 阴离子表面活性<br>剂   | mg/L | 0.05L   | 0.05L   | 0.05L   | 0.05L   | 0.05L   | 0.05L   | 0.3           | 是 |
| 高锰酸盐指数         | mg/L | 2.8     | 6.0     | 1.1     | 7.5     | 4.0     | 6.0     | 10            | 是 |
| 氨氮             | mg/L | 0.546   | 1.48    | 0.220   | 1.40    | 1.45    | 1.46    | 1.5           | 是 |
| 硫化物            | mg/L | 0.003L  | 0.003L  | 0.003L  | 0.003L  | 0.003L  | 0.003L  | 0.10          | 是 |
| 亚硝酸盐氮          | mg/L | 0.030   | 0.013   | 0.014   | 0.013   | 0.012   | 0.012   | 4.80          | 是 |
| 硝酸盐氮           | mg/L | 0.286   | 0.411   | 0.679   | 0.278   | 0.263   | 0.184   | 30            | 是 |
| 总氰化物           | mg/L | 0.004L  | 0.004L  | 0.004L  | 0.004L  | 0.004L  | 0.004L  | 0.1           | 是 |

| 氟化物      | mg/L | 0.40                   | 0.21                   | 0.21                   | 0.20                   | 0.19                   | 0.18                   | 2.0   | 是 |
|----------|------|------------------------|------------------------|------------------------|------------------------|------------------------|------------------------|-------|---|
| 碘化物      | mg/L | 0.006L                 | 0.006L                 | 0.006L                 | 0.006L                 | 0.006L                 | 0.006L                 | 0.50  | 是 |
| 六价铬      | mg/L | 0.004L                 | 0.004L                 | 0.004L                 | 0.004L                 | 0.004L                 | 0.004L                 | 0.1   | 是 |
| 铁        | mg/L | 0.66                   | 1.42                   | 0.14                   | 1.49                   | 0.46                   | 0.91                   | 2.0   | 是 |
| 锰        | mg/L | 0.587                  | 0.174                  | 0.004L                 | 0.531                  | 0.818                  | 0.982                  | 1.5   | 是 |
| 锌        | mg/L | 1.48×10 <sup>-2</sup>  | 4.50×10 <sup>-3</sup>  | 3.19×10 <sup>-2</sup>  | 2.22×10 <sup>-3</sup>  | 5.72×10 <sup>-3</sup>  | 1.78×10 <sup>-3</sup>  | 5.00  | 是 |
| 铝        | mg/L | 0.36                   | 0.08                   | 0.17                   | 0.47                   | 0.48                   | 0.07L                  | 0.50  | 是 |
| 钠        | mg/L | 12.8                   | 155                    | 12.8                   | 175                    | 18.6                   | 54.3                   | 400   | 是 |
| 硒        | mg/L | 4×10 <sup>-4</sup> L   | 0.1   | 是 |
| 镍        | mg/L | 2.69×10 <sup>-3</sup>  | 5.3×10 <sup>-4</sup>   | 5.2×10 <sup>-4</sup>   | 1.48×10 <sup>-3</sup>  | 1.42×10 <sup>-3</sup>  | 2.17×10 <sup>-3</sup>  | 0.10  | 是 |
| 砷        | mg/L | 3.5×10 <sup>-3</sup>   | 2.36×10 <sup>-2</sup>  | 3.0×10 <sup>-3</sup>   | 1.90×10 <sup>-2</sup>  | 2.34×10 <sup>-2</sup>  | 2.86×10 <sup>-2</sup>  | 0.05  | 是 |
| 镉        | mg/L | 5×10 <sup>-5</sup> L   | 5×10 <sup>-5</sup> L   | 8×10 <sup>-5</sup>     | 5×10 <sup>-5</sup> L   | 5×10 <sup>-5</sup> L   | 5×10 <sup>-5</sup> L   | 0.01  | 是 |
| 铜        | mg/L | 1.04×10 <sup>-3</sup>  | 8.1×10 <sup>-4</sup>   | 7.7×10 <sup>-4</sup>   | 8.8×10 <sup>-4</sup>   | 1.67×10 <sup>-3</sup>  | 6.9×10 <sup>-4</sup>   | 1.5   | 是 |
| 铅        | mg/L | 1×10 <sup>-3</sup> L   | 2×10 <sup>-3</sup>     | 4×10 <sup>-3</sup>     | 3×10 <sup>-3</sup>     | 4×10 <sup>-3</sup>     | 1×10 <sup>-3</sup> L   | 0.1   | 是 |
| 汞        | mg/L | 4×10 <sup>-5</sup> L   | 1.4×10 <sup>-4</sup>   | 4×10 <sup>-5</sup> L   | 1.4×10 <sup>-4</sup>   | 4×10 <sup>-5</sup> L   | 4×10 <sup>-5</sup> L   | 0.002 | 是 |
| 四氯化碳     | mg/L | 1.5×10 <sup>-3</sup> L | 0.05  | 是 |
| 三氯甲烷     | mg/L | 6.2×10 <sup>-3</sup>   | 1.4×10 <sup>-3</sup> L | 2.7×10 <sup>-3</sup>   | 1.4×10 <sup>-3</sup> L | 1.4×10 <sup>-3</sup> L | 1.4×10 <sup>-3</sup> L | 0.3   | 是 |
| 1,1-二氯乙烷 | mg/L | 1.2×10 <sup>-3</sup> L | 1.2   | 是 |
| 1,2-二氯乙烷 | mg/L | 1.4×10 <sup>-3</sup> L | 0.04  | 是 |

| 1,1-二氯乙烯     | mg/L | 1.2×10 <sup>-3</sup> L | 0.06 | 是 |
|--------------|------|------------------------|------------------------|------------------------|------------------------|------------------------|------------------------|------|---|
| 顺-1,2-二氯乙烯   | mg/L | 1.2×10 <sup>-3</sup> L | -    | - |
| 反-1,2-二氯乙烯   | mg/L | 1.1×10 <sup>-3</sup> L | -    | - |
| 二氯甲烷         | mg/L | 1×10 <sup>-3</sup> L   | 1×10 <sup>-3</sup> L   | 1×10-3L                | 1×10-3L                | 1×10 <sup>-3</sup> L   | 1×10 <sup>-3</sup> L   | 0.5  | 是 |
| 1,2-二氯丙烷     | mg/L | 1.2×10 <sup>-3</sup> L | 0.06 | 是 |
| 1,1,1,2-四氯乙烷 | mg/L | 1.5×10 <sup>-3</sup> L | 0.9  | 是 |
| 1,1,2,2-四氯乙烷 | mg/L | 1.1×10 <sup>-3</sup> L | 0.6  | 是 |
| 四氯乙烯         | mg/L | 1.2×10 <sup>-3</sup> L | 0.3  | 是 |
| 1,1,1-三氯乙烷   | mg/L | 1.4×10 <sup>-3</sup> L | 4    | 是 |
| 1,1,2-三氯乙烷   | mg/L | 1.5×10 <sup>-3</sup> L | 0.06 | 是 |
| 三氯乙烯         | mg/L | 1.2×10 <sup>-3</sup> L | 0.21 | 是 |
| 1,2,3-三氯丙烷   | mg/L | 1.2×10 <sup>-3</sup> L | 0.6  | 是 |
| 氯乙烯          | mg/L | 1.5×10 <sup>-3</sup> L | 0.09 | 是 |
| 苯            | mg/L | 2.1×10 <sup>-3</sup>   | 1.4×10 <sup>-3</sup> L | 1.4×10 <sup>-3</sup> L | 1.4×10 <sup>-3</sup> L | 9.98×10 <sup>-2</sup>  | 1.4×10 <sup>-3</sup> L | 0.12 | 是 |
| 氯苯           | mg/L | 2.7×10 <sup>-3</sup>   | 1×10 <sup>-3</sup> L   | 1.1×10 <sup>-3</sup>   | 1×10 <sup>-3</sup> L   | 0.208                  | 1.87×10 <sup>-2</sup>  | 1.4  | 是 |
| 1,2-二氯苯      | mg/L | 1.4×10 <sup>-3</sup>   | 8×10 <sup>-4</sup> L   | 24   | 是 |
| 1,4-二氯苯      | mg/L | 2.7×10 <sup>-3</sup>   | 8×10 <sup>-4</sup> L   | 8×10 <sup>-4</sup> L   | 8×10 <sup>-4</sup> L   | 2.1×10 <sup>-3</sup>   | 8×10 <sup>-4</sup> L   | 0.6  | 是 |
| 乙苯           | mg/L | 8×10 <sup>-4</sup> L   | 0.6  | 是 |
| 苯乙烯          | mg/L | 6×10 <sup>-4</sup> L   | 0.04 | 是 |

| 甲苯                                            | mg/L | 1.4×10 <sup>-3</sup> L | 1.4     | 是 |
|-----------------------------------------------|------|------------------------|------------------------|------------------------|------------------------|------------------------|------------------------|---------|---|
| 间二甲苯+对二<br>甲苯                                 | mg/L | 2.2×10 <sup>-3</sup> L | 1.0     | 是 |
| 邻二甲苯                                          | mg/L | 1.4×10 <sup>-3</sup> L |         |   |
| 硝基苯                                           | mg/L | 4×10 <sup>-5</sup> L   | 2       | 是 |
| 苯胺                                            | mg/L | 1.0×10 <sup>-4</sup>   | 5.7×10 <sup>-5</sup> L | 7.4     | 是 |
| 2-氯酚                                          | mg/L | 2.8×10 <sup>-3</sup>   | 1.1×10 <sup>-3</sup> L | 2.2     | 是 |
| 苯并[a]蒽                                        | mg/L | 1.2×10 <sup>-5</sup> L | 0.0048  | 是 |
| 苯并[a]芘                                        | mg/L | 4×10 <sup>-6</sup> L   | 4×10 <sup>-6</sup> L   | 4×10 <sup>-6</sup> L   | 4×10 <sup>-6</sup> L   | 4×10-6L                | 4×10-6L                | 0.0005  | 是 |
| 苯并[b]荧蒽                                       | mg/L | 4×10 <sup>-6</sup> L   | 0.008   | 是 |
| 苯并[k]荧蒽                                       | mg/L | 4×10 <sup>-6</sup> L   | 4×10 <sup>-6</sup> L   | 4×10 <sup>-6</sup> L   | 4×10 <sup>-6</sup> L   | 4×10-6L                | 4×10 <sup>-6</sup> L   | 0.048   | 是 |
|                                               | mg/L | 5×10 <sup>-6</sup> L   | 5×10 <sup>-6</sup> L   | 5×10 <sup>-6</sup> L   | 5×10 <sup>-6</sup> L   | 5×10-6L                | 5×10-6L                | 0.48    | 是 |
| 二苯并[a,h]蒽                                     | mg/L | 3×10 <sup>-6</sup> L   | 1.37×10 <sup>-4</sup>  | 1.25×10 <sup>-4</sup>  | 1.57×10 <sup>-4</sup>  | 3×10-6L                | 3×10-6L                | 0.00048 | 是 |
| 茚并[1,2,3-cd]芘                                 | mg/L | 5×10 <sup>-6</sup> L   | 5×10 <sup>-6</sup> L   | 5×10 <sup>-6</sup> L   | 5×10 <sup>-6</sup> L   | 5×10-6L                | 5×10-6L                | 0.0048  | 是 |
| 萘                                             | mg/L | 1.2×10 <sup>-5</sup> L | 0.6     | 是 |
| 可萃取性石油<br>(C <sub>10</sub> -C <sub>40</sub> ) | mg/L | 0.30                   | 0.06                   | 0.04                   | 0.06                   | 0.02                   | 0.12                   | 1.2     | 是 |
| 3,3-二氯联苯胺                                     | mg/L | 3×10 <sup>-4</sup> L   | -       | - |
| 三 1,2,4-三氯苯                                   | mg/L | 8×10 <sup>-5</sup> L   |         |   |
| 氯 1,2,3-三氯苯                                   | mg/L | 8×10 <sup>-5</sup> L   | 180     | 是 |
| 苯 1,3,5-三氯苯                                   | mg/L | 1.1×10 <sup>-4</sup> L |         |   |
| 氯甲烷                                           | mg/L | 1.3×10 <sup>-4</sup> L | -       | - |

| 3,4-二氯硝基苯 | mg/L | 定性未检出 | 定性未检出 | 定性未检出 | 定性未检出 | 定性未检出 | 定性未检出 | - | - |
|-----------|------|-------|-------|-------|-------|-------|-------|---|---|
| 2,4-二氯苯乙酮 | mg/L | 定性未检出 | 定性未检出 | 定性未检出 | 定性未检出 | 定性未检出 | 定性未检出 | - | - |
| 2,5-二氯硝基苯 | mg/L | 定性未检出 | 定性未检出 | 定性未检出 | 定性未检出 | 定性未检出 | 定性未检出 | - | - |
| 邻硝基对氯苯胺   | mg/L | 定性未检出 | 定性未检出 | 定性未检出 | 定性未检出 | 定性未检出 | 定性未检出 | - | - |

本次检测地下水样品检测指标中部分浊度检测结果符合《地下水质量标准》(GB/T 14848-2017)V类标准,其余指标均符合《地下水质量标准》(GB/T 14848-2017)IV类标准及《上海市建设用地地下水污染风险管控筛选值补充指标》中的第二类用地筛选值。顺-1,2-二氯乙烯、反-1,2-二氯乙烯、氯甲烷、3,3-二氯联苯胺、3,4-二氯硝基苯、2,4-二氯苯乙酮、2,5-二氯硝基苯、邻硝基对氯苯胺均未检出。

#### 8.2.4 地下水污染物浓度趋势

江苏隆昌化工有限公司地下水重点关注的污染物主要为石油烃(C<sub>10</sub>-C<sub>40</sub>)、氯苯、苯胺、硝基苯、1,2-二氯苯、1,4-二氯苯、三氯苯、故在 2024~2025 年自行监测中对其进行监测,由于近两年地下水采样点位按照园区要求,2024 年监测了 GW1~GW5、GW9。本次以此 6 个点进行对比分析:

表 8.2-5 地下水样品检测结果 (mg/L)

| As one of 1 Wall Bull made also consider   |      |      |      |      |      |    |                          |      |        |                          |                           |              |      |      |        |      |      |        |
|--------------------------------------------|------|------|------|------|------|----|--------------------------|------|--------|--------------------------|---------------------------|--------------|------|------|--------|------|------|--------|
| 监测点位                                       | GW1  |      |      | GW2  |      |    | GW3                      |      |        | GW4                      |                           |              | GW5  |      |        | GW9  |      |        |
| 监测年份                                       | 2024 | 2025 |      | 2024 | 2025 |    | 2024                     | 2025 |        | 2024                     | 2025                      |              | 2024 | 2025 |        | 2024 | 2025 |        |
|                                            | 2024 | 4月   | 7月   | 2024 | 4月   | 7月 | 2024                     | 4月   | 7月     | 2024                     | 4月                        | 7月           | 2024 | 4月   | 7月     | 2024 | 4月   | 7月     |
| 氯苯                                         | ND   | ND   | ND   | ND   | ND   | ND | ND                       | ND   | ND     | ND                       | 1.67×<br>10 <sup>-2</sup> | 4.2×1<br>0-3 | ND   | ND   | 0.0027 | ND   | ND   | ND     |
| 苯胺                                         | ND   | ND   | ND   | ND   | ND   | ND | 1.4×<br>10 <sup>-4</sup> | ND   | ND     | 1.3×<br>10 <sup>-4</sup> | ND                        | ND           | ND   | ND   | 0.0001 | ND   | ND   | ND     |
| 硝基苯                                        | ND   | ND   | ND   | ND   | ND   | ND | ND                       | ND   | ND     | ND                       | ND                        | ND           | ND   | ND   | ND     | ND   | ND   | ND     |
| 1,2-二氯苯                                    | ND   | ND   | ND   | ND   | ND   | ND | ND                       | ND   | 0.0896 | ND                       | 2.96×<br>10 <sup>-2</sup> | ND           | ND   | ND   | 0.0099 | ND   | ND   | 0.0677 |
| 1,4-二氯苯                                    | ND   | ND   | ND   | ND   | ND   | ND | ND                       | ND   | ND     | ND                       | 0.226                     | 0.005        | ND   | ND   | 0.0027 | ND   | ND   | 0.0158 |
| 石油烃<br>(C <sub>10</sub> -C <sub>40</sub> ) | ND   | 0.09 | 0.03 | 0.01 | 0.03 | ND | 0.08                     | ND   | 0.08   | 0.10                     | 0.39                      | 0.58         | 0.09 | 1.16 | 0.30   | 0.07 | 0.04 | 0.03   |
| 三氯苯                                        | ND   | ND   | ND   | ND   | ND   | ND | ND                       | ND   | ND     | ND                       | ND                        | ND           | ND   | ND   | ND     | ND   | ND   | ND     |

监测数据趋势分析结果表明,硝基苯、三氯苯两年来均为未检出,氯苯、苯胺、1,2-二氯苯、1,4-二氯苯在个别点位有检出,检出浓度值较小,无明显异常,石油烃(C<sub>10</sub>-C<sub>40</sub>)有检出,检出值基本稳定,无太大波动。



#### 9质量保证与质量控制

#### 9.1 现场采样过程

#### 1、仪器校准和清洗

现场使用的所有仪器在使用前都进行校准,钻井和取样设备在使用前和两次使用间都进行清洗,以防止交叉污染。

采用一次性手套进行土壤样品和地下水样品的采集,每次采样时,均更换新手套。使用一次性贝勒管进行地下水洗井和地下水采集,每次采样时,均更换新的贝勒管。

#### 2、现场质量控制样品

土壤样品和地下水样品都采集了质量控制样。质量保证/质量控制和现场采样过程都记录在现场记录单中,现场记录了采样步骤、采样工具、现场观察情况(如样品颜色和气味)以及采样状况。

本次调查在现场采集土壤平行样,平行样大于 10%,分析指标与 土壤原样一致。在现场采集地下水平行样,平行样比例大于 10%,分 析指标与地下水原样一致。

### 9.2 运输及流转过程

土壤和地下水样品一经采集做好标记后,立刻转移到装有冰块的保温箱中直至送到实验室。采用运输流转单追踪每个样品从采集到实验室分析的全过程,流转单中记录了样品采集的信息以及每个样品具体的分析参数。现场工作人员应在流转单上填写如下内容:样品采集日期和时间、样品标识、数量、所需分析参数等。

本次调查分别采集了土壤和地下水全程序空白样,土壤和地下水运输空白样,以及设备空白样。

### 9.3 实验室检测分析过程

实验室内部质量控制措施包括方法空白、实验室平行样、基体加

标等。(1)平行样:目的是确认实验室对于该基质测试的稳定性;分别按照至少每20个样品提供1套平行样的检测结果;无机、金属、有机物等各类平行样检测结果的相对偏差均要求小于国家有关分析质控要求。(2)实验室空白:目的是确认实验过程中是否存在污染,包括玻璃器皿和试剂等;至少每20个样品提供一套方法空白的结果,如果单批送样不足20个样品、也要提供一套方法空白结果;要求方法空白的检出值小于检出限。(3)基体加标平行:目的是确认样品基质对于目标化合物的影响及其稳定性。土壤样品和水样分别按照至少每20个样品提供一套基体加标结果;基质加标样平行检测结果的相对偏差均小于国家有关分析质控要求。

#### 10 结论与措施

#### 10.1 结论

通过本次土壤和地下水自行监测样品分析结果可知:

地块内所有土壤样品检测结果均符合《土壤环境质量 建设用地土壤污染风险管控标准(试行)(GB36600-2018)表 1 以及《建设用地土壤污染风险筛选值和管制值》(DB4403/T 67-2020)表 2 中第二类用地的筛选值。

本次检测地下水样品检测指标中部分浊度检测结果符合《地下水质量标准》(GB/T 14848-2017)V类标准,其余指标均符合《地下水质量标准》(GB/T 14848-2017)IV类标准及《上海市建设用地地下水污染风险管控筛选值补充指标》中的第二类用地筛选值。顺-1,2-二氯乙烯、反-1,2-二氯乙烯、氯甲烷、3,3-二氯联苯胺、3,4-二氯硝基苯、2,4-二氯苯乙酮、2,5-二氯硝基苯、邻硝基对氯苯胺均未检出。

综上所述,本次自行监测分析结果表明江苏隆昌化工有限公司地 块内土壤和地下水质量处于良好状态。

#### 10.2 措施

本次检测,企业土壤及地下水环境质量相对良好,但仍然建议企业在今后生产过程中还应继续加强环境监管,密切关注各类原辅材料的转运及使用过程中跑冒滴漏、废气是否达标排放、危废的贮存及转运是否符合相关标准要求,加强排查各类管线是否泄漏,同时提高全体员工的环保意识,杜绝人为因素造成的环境污染。

JSHA-TR-32-01(2023)



# 检测报告 TEST REPORT

(2025) 恒安(综)字第(271)号



检测类别: 委托检测

项目名称: 土壤、地下水检测

委托单位: 江苏隆昌化工有限公司

江苏恒安检测技术有限公司

JiangSu HengAn Detection Technology Co., Ltd.

二〇二五年六月

第 1 页 共 24 页

### 声明

- 一、用户对本报告若有异议,可在收到本报告后7日内,向本公司提出书面申诉,超过申诉期限,概不受理。
- 二、本报告无编制、复核、审核及授权签字人签名无效,未加盖检验检测 专用章、骑缝章无效。
- 三、未经许可,不得复制本报告;任何对本报告的涂改、伪造、变更及不 当使用均无效,其责任人将承担相关法律及经济责任,本公司保留对上述行为 追究法律责任的权利。
- 四、本报告检测结果仅对被测地点、对象及当时情况有效;由其他单位或 个人采集送检的样品,本公司仅对送检样品的检测结果负责,委托方对送检样 品及其相关信息的真实性负责。

五、不包含 CMA 资质认定标志的报告仅用于科研、教学或企业内部质量控制活动使用,检测数据和结果仅供参考用,不具有社会证明作用。

六、本公司对本报告的检测数据保守秘密。

七、未经本公司书面同意,该检验报告不得用于商业性宣传。

地 址:南通市崇川区观音山街道胜利路 168 号 2 幢 4 层 5 层

邮政编码: 226000

电 话: 0513-68252917

传 真: 0513-68252966

电子邮件: jshajcjs@163.com

第 2 页 共 24 页

## 检测报告

|         |                                                      | 7.14 (火)                                                                                    | 报告———                                                                                                                  |                                                     |                                               |
|---------|------------------------------------------------------|---------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|-----------------------------------------------|
| 委托单位    |                                                      | 江京                                                                                          | 苏隆昌化工有限:                                                                                                               | 公司                                                  |                                               |
| 通讯地址    |                                                      | 如皋                                                                                          | 市长江镇钱江路                                                                                                                | F 1 号                                               |                                               |
| 联系人     | 崔                                                    | 总                                                                                           | 联系电话                                                                                                                   | 15706                                               | 271352                                        |
| 采样日期    | 2025.04.17                                           | 接样日期                                                                                        | 2025.04.17、<br>2025.04.18                                                                                              | 分析日期                                                | 2025.04.17~<br>2025.05.08                     |
| 检测目的    | 受江苏隆 其环境管理提                                          |                                                                                             | 司委托,对其地:                                                                                                               | 块土壤、地下水                                             | 《进行检测,为                                       |
| 检测内容    | 硬度)、溶解的<br>阴离子表面活<br>酸盐氮、总氰<br>可萃取性石油<br>2-氯酚、1,2,3- | 生总固体、硫酸<br>性剂、高锰酸<br>化物、氟化物、<br>烃(C <sub>10</sub> -C <sub>40</sub> )<br>三氯苯、1,2,4<br>六价铬、总码 | 度、肉眼可见物、<br>酸盐、氯化物、皂<br>盐指数、氨氮、<br>碘化物、汞、石<br>、挥发性有机物<br>-三氯苯、1,3,5-<br>申、镉、铜、铅、<br>C <sub>10</sub> -C <sub>40</sub> ) | 失、锰、铜、锌<br>硫化物、钠、亚<br>申、硒、镉、六<br>、多环芳烃、表<br>三氯苯、环氧氯 | 、铝、挥发酚<br>亞硝酸盐氮、硝<br>价铬、铅、镍<br>苯胺、硝基苯、<br>瓜丙烷 |
| 检测依据    | 见表 3                                                 |                                                                                             |                                                                                                                        |                                                     |                                               |
| 编制: 复核: | 建造                                                   |                                                                                             |                                                                                                                        |                                                     |                                               |

签发: 加至十2

签发日期了~25年 6月16日 检测专用章

第 3 页 共 24 页

(2025) 恒安(综)字第(271)号

表 1 地下水检测结果

|      |                                 |                |      |      |          |     |       |     |     |                |        |      |      | _       |          |        |       | _      |
|------|---------------------------------|----------------|------|------|----------|-----|-------|-----|-----|----------------|--------|------|------|---------|----------|--------|-------|--------|
|      | 检出限                             |                |      | ı    | 1        | 1   | ı     | ı   |     | 1              | ı      | ı    | ı    | T       | 1        | Ē      | ï     | i      |
| GW12 | N: 32.090715°<br>E: 120.519728° | 2500448D12-001 | 无色透明 | 7.4  | 12.6     | 无   | 无     | 31  | SL. | 642            | 743    | 61   | 56   | 0.0003L | 0.05L    | 7.7    | 1.39  | 0.003L |
| GW11 | N: 32.089688°<br>E: 120.519993° | 2500448D11-001 | 无色透明 | 7.7  | 12.6     | 无   | 无     | 29  | SL. | 540            | 199    | 30   | 85   | 0.0003L | 0.05L    | 4.4    | 1.44  | 0.003L |
| GW9  | N: 32.089639°<br>E: 120.518448° | 2500448D9-001  | 无色透明 | 7.6  | 12.6     | 无   | 无     | 28  | SL. | 160            | 408    | 18   | 38   | 0.0003L | 0.05L    | 2.9    | 0.165 | 0.003L |
| GW1  | N: 32.090521°<br>E: 120.518662° | 2500448D1-001  | 无色透明 | 7.9  | 12.6     | 无   | 无     | 33  | SL  | 188            | 430    | 12   | 49   | 0.0003L | 0.05L    | 3.8    | 0.984 | 0.003L |
| 监测点位 | 经纬度                             |                |      | 无量纲  | <u>ي</u> | ,   | 1     | NTU | 度   | mg/L           | mg/L   | mg/L | mg/L | mg/L    | mg/L     | mg/L   | mg/L  | mg/L   |
|      | 2025.04.17                      | 样品编号           | 样品状态 | pH 值 | 水温       | 臭和味 | 肉眼可见物 | 油度  | 色度  | 钙、镁总量<br>(总硬度) | 溶解性总固体 | 硫酸盐  | 氣化物  | 挥发酚     | 阴离子表面活性剂 | 高锰酸盐指数 | 吳氮    | 硫化物    |
| *    | * E                             |                |      |      |          |     |       |     | 纽   | 北溪             | 账      |      |      |         |          |        |       |        |

第 4 页 共 24 页

第5页共24页

| 亚硝酸盐氮 | mg/L | 0.063                  | 0.014                 | 0.007                  | 900.0                  | ı                    |
|-------|------|------------------------|-----------------------|------------------------|------------------------|----------------------|
| 硝酸盐氮  | mg/L | 0.276                  | 0.393                 | 0.531                  | 0.240                  |                      |
| 总氰化物  | mg/L | 0.004L                 | 0.004L                | 0.004L                 | 0.004L                 | ,                    |
| 氟化物   | mg/L | 99.0                   | 0.36                  | 0.39                   | 0.33                   | ı                    |
| 碘化物   | mg/L | 0.006L                 | 1900'0                | 0.006L                 | 0.006L                 | 1                    |
| 六价铬   | mg/L | 0.004L                 | 0.004L                | 0.004L                 | 0.004L                 | 1                    |
| 铁     | mg/L | 1.62                   | 0.57                  | 1.52                   | 1.47                   | T                    |
| 禁     | mg/L | 0.208                  | 0.004L                | 0.510                  | 1.19                   |                      |
| 恭     | mg/L | 0.185                  | 4.24×10 <sup>-3</sup> | 1.40×10 <sup>-2</sup>  | 3.26×10 <sup>-3</sup>  | ,                    |
| 品     | mg/L | 0.45                   | 0.40                  | 0.07L                  | 0.07L                  | 7                    |
| 钠     | mg/L | 20.0                   | 18.0                  | 22.1                   | 47.6                   | ï                    |
| 砸     | mg/L | 4×10 <sup>-4</sup> L   | 4×10-4L               | 4×10 <sup>-4</sup> L   | 4×10 <sup>-4</sup> L   | r                    |
| 镍     | mg/L | 8.28×10 <sup>-3</sup>  | 2.15×10 <sup>-3</sup> | 1.58×10 <sup>-3</sup>  | 1.96×10 <sup>-3</sup>  | ,                    |
| 睡     | mg/L | 9.4×10 <sup>-3</sup>   | 1.8×10-3              | 2.03×10 <sup>-2</sup>  | 2.98×10 <sup>-2</sup>  | ,                    |
| 福     | mg/L | 1.5×10 <sup>-4</sup>   | 2×10-2L               | 5×10-5L                | 5×10-5L                | 1                    |
| 皗     | mg/L | 1.36×10-2              | 2.73×10 <sup>-3</sup> | 6.0×10 <sup>-4</sup>   | 3.3×10 <sup>-4</sup>   | ı                    |
| 铝     | mg/L | 1.0×10 <sup>-2</sup>   | 2×10 <sup>-3</sup>    | 1×10 <sup>-3</sup>     | 1×10-3                 | ı                    |
| 来     | mg/L | 4×10-5L                | 1.1×10 <sup>-4</sup>  | 4×10-5L                | 4×10 <sup>-5</sup> L   | 1                    |
| 四氯化碳  | mg/L | 1.5×10 <sup>-3</sup> L | 1.5×10-3L             | 1.5×10 <sup>-3</sup> L | 1.5×10-3L              | 1.5×10 <sup>-3</sup> |
| 三氯甲烷  | mg/L | 1.4×10 <sup>-3</sup> L | 2.3×10 <sup>-3</sup>  | 1.4×10 <sup>-3</sup> L | 1.4×10 <sup>-3</sup> L | 1.4×10-3             |

(2025) 恒安(综)字第(271)号

第6页共24页

| 1,1-二氯乙烷     | mg/L | 1.2×10 <sup>-3</sup> L | 1.2×10 <sup>-3</sup> L | 1.2×10-3L              | 1.2×10 <sup>-3</sup> L | 1.2×10-3             |
|--------------|------|------------------------|------------------------|------------------------|------------------------|----------------------|
|              | mg/L | 1.4×10 <sup>-3</sup> L | 1.4×10 <sup>-3</sup> L | 1.4×10 <sup>-3</sup> L | 1.4×10 <sup>-3</sup> L | 1.4×10-3             |
|              | mg/L | 1.2×10 <sup>-3</sup> L | 1.2×10-³L              | 1.2×10-3L              | 1.2×10 <sup>-3</sup> L | 1.2×10 <sup>-3</sup> |
| 顺-1,2-二氯乙烯   | mg/L | 1.2×10 <sup>-3</sup> L | 1.2×10-3L              | 1.2×10 <sup>-3</sup> L | 1.2×10 <sup>-3</sup> L | 1.2×10-3             |
| 反-1,2-二氯乙烯   | mg/L | 1.1×10 <sup>-3</sup> L | 1.1×10 <sup>-3</sup> L | 1.1×10 <sup>-3</sup> L | 1.1×10 <sup>-3</sup> L | 1.1×10 <sup>-3</sup> |
|              | mg/L | 1×10-3L                | 1×10-3L                | 1×10-3L                | 1×10-3L                | 1×10-3               |
| 1,2-二氯丙烷     | mg/L | 1.2×10 <sup>-3</sup> L | 1.2×10-3L              | 1.2×10-3L              | 1.2×10 <sup>-3</sup> L | 1.2×10-3             |
| 1,1,1,2-四氯乙烷 | mg/L | 1.5×10 <sup>-3</sup> L | 1.5×10 <sup>-3</sup> L | 1.5×10 <sup>-3</sup> L | 1.5×10 <sup>-3</sup> L | 1.5×10 <sup>-3</sup> |
| 1,1,2,2-四氯乙烷 | mg/L | 1.1×10 <sup>-3</sup> L | 1.1×10 <sup>-3</sup> L | 1.1×10 <sup>-3</sup> L | 1.1×10 <sup>-3</sup> L | 1.1×10-3             |
|              | mg/L | 1.2×10 <sup>-3</sup> L | 1.2×10 <sup>-3</sup> L | 1.2×10-3L              | 1.2×10 <sup>-3</sup> L | 1.2×10-3             |
| 1,1,1-三氯乙烷   | mg/L | 1.4×10 <sup>-3</sup> L | 1.4×10 <sup>-3</sup> L | 1.4×10 <sup>-3</sup> L | 1.4×10 <sup>-3</sup> L | 1.4×10 <sup>-3</sup> |
| 1,1,2-三氯乙烷   | mg/L | 1.5×10 <sup>-3</sup> L | 1.5×10 <sup>-3</sup> L | 1.5×10 <sup>-3</sup> L | 1.5×10 <sup>-3</sup> L | 1.5×10-3             |
| 三氯乙烯         | mg/L | 1.2×10 <sup>-3</sup> L | 1.2×10-3L              | 1.2×10-3L              | 1.2×10-3L              | 1.2×10-3             |
| 1,2,3-三氯丙烷   | mg/L | 1.2×10 <sup>-3</sup> L | 1.2×10 <sup>-3</sup> L | 1.2×10-3L              | 1.2×10-3L              | 1.2×10-3             |
|              | mg/L | 1.5×10 <sup>-3</sup> L | 1.5×10 <sup>-3</sup> L | 1.5×10-3L              | 1.5×10 <sup>-3</sup> L | 1.5×10 <sup>-3</sup> |
|              | mg/L | 1.4×10 <sup>-3</sup> L | 1.4×10 <sup>-3</sup> L | 1.44×10-2              | 1.4×10 <sup>-3</sup> L | 1.4×10-3             |
|              | mg/L | 1×10-3L                | 1×10-3L                | 7.34×10-2              | $1\times10^{-3}$ L     | 1×10 <sup>-3</sup>   |
|              | mg/L | 8×10 <sup>-4</sup> L   | 8×10-4L                | 8×10 <sup>-4</sup> L   | 8×10-4L                | 8×10-4               |
|              | mg/L | 8×10 <sup>-4</sup> L   | 8×10 <sup>-4</sup> L   | 8×10 <sup>-4</sup> L   | 8×10-4L                | 8×10 <sup>-4</sup>   |
|              | mg/L | 8×10 <sup>-4</sup> L   | 3×10⁴L                 | 8×10 <sup>-4</sup> L   | 8×10-4L                | 8×10 <sup>-4</sup>   |

(2025) 恒安(综)字第(271)号

JSHA-TR-32-01(2023)

(2025) 恒安(综)字第(271)号

|         | TIN           | 苯乙烯                  | mg/L   | T <sub>+</sub> 01×9    | 6×10 <sup>4</sup> L                                                 | 7 <sub>b</sub> -01×9   | $6 \times 10^{-4}$ L   | 6×10 <sup>-4</sup>   |
|---------|---------------|----------------------|--------|------------------------|---------------------------------------------------------------------|------------------------|------------------------|----------------------|
|         |               | 甲苯                   | mg/L   | 1.4×10 <sup>-3</sup> L | 1.4×10 <sup>-3</sup> L                                              | 1.4×10 <sup>-3</sup> L | $1.4 \times 10^{-3}$ L | 1.4×10 <sup>-3</sup> |
|         | 间二甲           | 二甲苯+对二甲苯             | mg/L   | 2.2×10 <sup>-3</sup> L | 2.2×10 <sup>-3</sup> L                                              | 2.6×10 <sup>-3</sup>   | 2.2×10 <sup>-3</sup> L | 2.2×10 <sup>-3</sup> |
|         | 松             | 邻二甲苯                 | mg/L   | 1.4×10 <sup>-3</sup> L | 1.8×10 <sup>-3</sup>                                                | 1.4×10 <sup>-3</sup> L | 1.4×10-3L              | 1.4×10-3             |
|         | 4             | 硝基苯                  | mg/L   | 4×10-5L                | 4×10-5L                                                             | 4×10-3L                | 4×10-5L                | 4×10-5               |
|         |               | 苯胺                   | mg/L   | 5.7×10°5L              | 5.7×10·5L                                                           | 5.7×10-5L              | 5.7×10-5L              | 5.7×10 <sup>-5</sup> |
|         | 8             | 2-氯酚                 | mg/L   | 3.5×10 <sup>-3</sup>   | 2.4×10 <sup>-3</sup>                                                | 2.3×10 <sup>-3</sup>   | 2.5×10 <sup>-3</sup>   | 1.1×10 <sup>-3</sup> |
|         | <del>**</del> | 苯并[a]蒽               | mg/L   | 1.2×10 <sup>-5</sup> L | 1.2×10-5L                                                           | 1.2×10-5L              | 1.2×10-5L              | 1.2×10-5             |
| 剑       | **            | 苯并[a]芘               | mg/L   | 4×10-6L                | 4×10-6L                                                             | 4×10-6L                | 4×10-6L                | 4×10-6               |
| 戻       | 株             | 苯并[b]荧蒽              | mg/L   | 1.0×10 <sup>-5</sup>   | 4×10-6L                                                             | 4×10-6L                | 4×10-6L                | 4×10-6               |
| 田田      | 株             | 苯并[k]荧蒽              | mg/L   | 4×10-6L                | 4×10-6L                                                             | 4×10-6L                | 4×10-6L                | 4×10-6               |
| <b></b> |               | 粗                    | mg/L   | 2×10-eL                | 79-01×5                                                             | J <sub>0</sub> -01×S   | T <sub>9</sub> -01×5   | 5×10-6               |
|         |               | 二苯并[a,h]蒽            | mg/L   | 1.7×10-5               | 1.07×10 <sup>-4</sup>                                               | 2.37×10 <sup>-4</sup>  | 7.3×10 <sup>-5</sup>   | 3×10-6               |
|         | 市并[           | 茚并[1,2,3-cd]芘        | mg/L   | 5×10-6L                | 79-10-6L                                                            | 2×10-eL                | 2×10-eL                | 5×10-6               |
|         |               | 茶                    | mg/L   | 1.2×10-5L              | 5.70×10 <sup>-4</sup>                                               | 1.2×10-5L              | 1.2×10-5L              | 1.2×10-5             |
|         | 可萃用<br>(C     | 可萃取性石油烃<br>(C10-C40) | mg/L   | 0.09                   | 0.04                                                                | 90.00                  | 0.01                   | ī                    |
|         |               | 1,2,4-三氯苯*           | mg/L   | 8×10-5L                | 8×10-2L                                                             | 8×10-2L                | 3×10-5L                | 8×10-5               |
|         | 三氮苯*          | 1,2,3-三氯苯*           | mg/L   | J <sub>5</sub> -01×8   | 75·10·5L                                                            | 8×10-2L                | 3×10-2L                | 8×10-5               |
|         |               | 1,3,5-三氯苯*           | mg/L   | 1.1×10 <sup>-4</sup> L | 1.1×10 <sup>-4</sup> L                                              | 1.1×10 <sup>-4</sup> L | 1.1×10 <sup>-4</sup> L | 1.1×10 <sup>-4</sup> |
|         | /ш.*»П        | 加"*"的检测因子分包          | 给江苏格林勒 | 为斯检测科技有限公司, 该          | 包给江苏格林勒斯检测科技有限公司,该部分检测结果引用江苏格林勒斯检测科技有限公司报告编号 GE2504172801A1,CMA 证书号 | 助斯检测科技有限公司报告编          | 哥号 GE2504172801A1, CN  | AA 证书号               |
| 备注      | 10-10         |                      |        |                        | 231012341317;                                                       |                        |                        |                      |
|         |               |                      |        | 未检出以                   | 未检出以"检出限+L"表示,检出限见上表及表3。                                            | 上表及表 3。                |                        |                      |

第7页共24页

JSHA-TR-32-01(2023)

(2025) 恒安(综)字第(271)号

表1(续) 地下水检测结果

| *   |                | 监测点位 | GW4                             | GW5                             | 9MD                             | GW7                             | GW8                             |     |
|-----|----------------|------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|-----|
| 大田田 | 2025.04.17     | 经纬度  | N: 32.089590°<br>E: 120.518932° | N: 32.089360°<br>E: 120.518862° | N: 32.089262°<br>E: 120.519514° | N: 32.090161°<br>E: 120.519914° | N: 32.089089°<br>E: 120.519857° | 检出限 |
|     | 样品编号           |      | 2500448D4-001                   | 2500448D5-001                   | 2500448D6-001                   | 2500448D7-001                   | 2500448D8-001                   |     |
|     | 样品状态           |      | 无色透明                            | 无色透明                            | 无色透明                            | 无色透明                            | 无色透明                            |     |
|     | pH值            | 无量纲  | 7.3                             | 7.5                             | 7.4                             | 7.2                             | 7.4                             | 1   |
|     | 水韻             | သွ   | 12.6                            | 12.6                            | 12.6                            | 12.6                            | 12.6                            |     |
|     | 臭和味            |      | 无                               | 无                               | 无                               | 无                               | 无                               | 1   |
|     | 肉眼可见物          | 1    | 无                               | 无                               | 无                               | 无                               | 无                               | ,   |
|     | 浊度             | NTU  | 32                              | 34                              | 39                              | 35                              | 37                              | 7   |
| 全   | 色度             | 度    | SL.                             | SL                              | SL                              | SL.                             | 5L                              | 1   |
| 影場  | 钙、镁总量<br>(总硬度) | mg/L | 168                             | 201                             | 397                             | 638                             | 163                             | ĸ   |
| 账   | 溶解性总固体         | mg/L | 380                             | 419                             | 549                             | 704                             | 357                             |     |
|     | 硫酸盐            | mg/L | 18                              | 14                              | 11                              | 20                              | 14                              | i.  |
|     | 氯化物            | mg/L | 54                              | 46                              | 85                              | 16                              | 36                              | ì   |
|     | 挥发酚            | mg/L | 0.0003L                         | 0.0003L                         | 0.0003L                         | 0.0003L                         | 0.0003L                         | 1   |
|     | 阴离子表面活性剂       | mg/L | 0.05L                           | 0.05L                           | 0.05L                           | 0.05L                           | 0.05L                           |     |
|     | 高锰酸盐指数         | mg/L | 5.0                             | 3.6                             | 9.9                             | 9.3                             | 3.3                             | 1   |
|     | 短额             | mg/L | 1.35                            | 0.445                           | 1.46                            | 1.40                            | 0.107                           |     |
|     | 硫化物            | mg/L | 0.003L                          | 0.003L                          | 0.003L                          | 0.003L                          | 0.003L                          | 1   |

第8页共24页

第 9 页 共 24 页

|    | 亚硝酸盐氮 | mg/L | 0.101                  | 0.109                  | 0.109                  | 0.005                  | 0.008                 |                      |
|----|-------|------|------------------------|------------------------|------------------------|------------------------|-----------------------|----------------------|
|    | 硝酸盐氮  | mg/L | 0.326                  | 0.427                  | 0.304                  | 0.224                  | 0.257                 | 1                    |
|    | 总氰化物  | mg/L | 0.004L                 | 0.004L                 | 0.004L                 | 0.004L                 | 0.004L                | t                    |
|    | 氟化物   | mg/L | 0.52                   | 0.42                   | 0.36                   | 0.34                   | 0.32                  | 1                    |
|    | 碘化物   | mg/L | 1900°0                 | T900'0                 | 0.006L                 | 0.006L                 | 0.006L                | r                    |
|    | 六价格   | mg/L | 0.004L                 | 0.004L                 | 0.004L                 | 0.004L                 | 0.004L                | ı                    |
|    | 铁     | mg/L | 1.67                   | 0.27                   | 1.66                   | 1.66                   | 0.12                  | ¥                    |
|    | 葚     | mg/L | 0.158                  | 0.087                  | 0.408                  | 0.965                  | 0.004L                | ı                    |
| ź  | 持     | mg/L | 6.67×10 <sup>-2</sup>  | 7.66×10 <sup>-2</sup>  | 1.64×10-2              | 1.65×10 <sup>-3</sup>  | 2.08×10 <sup>-2</sup> | 1                    |
| 河河 | 铝     | mg/L | 0.45                   | 0.22                   | 0.45                   | 0.07L                  | 0.11                  |                      |
| 田北 | 钟     | mg/L | 16.8                   | 16.4                   | 39.2                   | 13.7                   | 14.7                  |                      |
| *  | 題     | mg/L | 4×10-4L                | 4×10-4L                | 4×10 <sup>4</sup> L    | 4×10-4L                | 4×10-4L               | ï                    |
|    | 镍     | mg/L | 7.41×10 <sup>-3</sup>  | 2.76×10 <sup>-3</sup>  | 3.85×10 <sup>-3</sup>  | 2.70×10 <sup>-3</sup>  | 1.65×10 <sup>-3</sup> | 1                    |
|    | ቀ     | mg/L | 6.5×10 <sup>-3</sup>   | 1.5×10 <sup>-3</sup>   | 4.7×10 <sup>-3</sup>   | 2.25×10-2              | 1.8×10 <sup>-3</sup>  | 1                    |
| -  | 梅     | mg/L | 2.0×10 <sup>-4</sup>   | 3×10-5L                | 5×10-5L                | 2×10-2L                | J-01×5                | ï                    |
|    | 钊     | mg/L | 1.15×10 <sup>-2</sup>  | 1.37×10 <sup>-3</sup>  | 1.82×10 <sup>-3</sup>  | 4.2×10 <sup>-4</sup>   | 8.2×10 <sup>-4</sup>  | ì                    |
|    | 枴     | mg/L | 1.5×10 <sup>-2</sup>   | 3×10 <sup>-3</sup>     | 2×10-3                 | 1×10 <sup>-3</sup>     | 2×10-3                | 1                    |
| •  | 长     | mg/L | 4×10-5L                | 1.0×10 <sup>-4</sup>   | 4×10-5L                | 4×10-5L                | 4×10-5L               | ı                    |
|    | 四氯化碳  | mg/L | 1.5×10 <sup>-3</sup> L | 1.5×10 <sup>-3</sup> L | 1.5×10 <sup>-3</sup> L | 1.5×10 <sup>-3</sup> L | 1.5×10-3L             | 1.5×10 <sup>-3</sup> |
|    | 三氯甲烷  | mg/L | 1.4×10 <sup>-3</sup> L | 1.4×10 <sup>-3</sup> L | 1.4×10 <sup>-3</sup> L | 1.4×10 <sup>-3</sup> L | 1.4×10 <sup>-3</sup>  | 1.4×10-3             |

(2025) 恒安(综)字第(271)号

112

第 10 页 共 24 页

 $1.2 \times 10^{-3}$  $1.4 \times 10^{-3}$  $1.2 \times 10^{-3}$  $1.1 \times 10^{-3}$  $1.2 \times 10^{-3}$ 1.2×10<sup>-3</sup>  $1.1 \times 10^{-3}$ 1.2×10-3  $1.4 \times 10^{-3}$  $1.2 \times 10^{-3}$  $1.2 \times 10^{-3}$  $1.5 \times 10^{-3}$  $1.5 \times 10^{-3}$  $1 \times 10^{-3}$  $1.4 \times 10^{-3}$  $1 \times 10^{-3}$  $8 \times 10^{-4}$  $8 \times 10^{-4}$  $8 \times 10^{-4}$ 1.4×10-3L 1.2×10-3L 1.1×10-3L 1.4×10<sup>-3</sup>L 1.2×10<sup>-3</sup>L 1.2×10-3L 1.5×10<sup>-3</sup>L 1.1×10-3L 1.2×10-3L 1.5×10-3L 1.2×10-3L 1.5×10-3L 1.4×10-3L  $1\times10^{-3}L$  $1\times10^{-3}L$ 8×10-4L 8×10-4L  $8 \times 10^{-4}$ L 1.2×10-3L 1.2×10-3L 1.4×10-3L 1.1×10-3L 1.2×10-3L 1.5×10<sup>-3</sup>L 1.1×10<sup>-3</sup>L 1.2×10-3L 1.4×10-3L 1.5×10<sup>-3</sup>L 1.2×10-3L 1.2×10-3L 1.5×10-3L 1.2×10-3L 1.4×10-3L  $1\times10^{-3}L$  $1\times10^{-3}L$  $4.4 \times 10^{-3}$ 8×10-4L 9×10-4 1.2×10<sup>-3</sup>L 1.2×10-3L 1.4×10<sup>-3</sup>L 1.2×10<sup>-3</sup>L 1.1×10<sup>-3</sup>L 1.5×10-3L 1.1×10-3L 1.2×10-3L 1.4×10<sup>-3</sup>L 1.5×10<sup>-3</sup>L 1.2×10<sup>-3</sup>L 9.09×10-2 1.2×10<sup>-3</sup>L 1.2×10-3L 3.05×10-2  $1{\times}10^{-3}L$ 0.145 8×10-4L 0.114 2.80×10-2 1.2×10<sup>-3</sup>L 1.1×10<sup>-3</sup>L 1.2×10<sup>-3</sup>L 1.5×10<sup>-3</sup>L 1.1×10<sup>-3</sup>L 1.2×10-3L 1.4×10<sup>-3</sup>L 1.5×10<sup>-3</sup>L 1.2×10<sup>-3</sup>L 1.5×10<sup>-3</sup>L 1.4×10-3L 1.2×10<sup>-3</sup>L 1.2×10-3L 1.2×10-3L  $1\times10^{-3}L$  $1 \times 10^{-3}L$  $8 \times 10^{-4} \text{L}$ 8×10-4L 8×10<sup>-4</sup>L 1.2×10-3L 1.4×10-3L 1.2×10-3L 1.2×10-3L 1.1×10<sup>-3</sup>L 1.2×10-3L 1.5×10<sup>-3</sup>L 1.2×10-3L 1.4×10<sup>-3</sup>L 1.1×10<sup>-3</sup>L  $1.5\times10^{-3}L$ 2.96×10-2  $1{\times}10^{-3}L$ 1.2×10-3L 1.2×10-3L 1.5×10-3L 2.5×10<sup>-3</sup> 1.67×10<sup>-2</sup>  $8 \times 10^{-4}$ L 0.226 mg/L 顺-1,2-二氯乙烯 反-1,2-二氯乙烯 1,1,1,2-四氯乙烷 1,1,2,2-四氯乙烷 1,1,1-三氯乙烷 1,1,2-三氯乙烷 1,2,3-三氯丙烷 1,1-二氯乙烷 1,1-二氯乙烯 1,2-二氯乙烷 1,2-二氯丙烷 二氯甲烷 三氯乙烯 1,2-二氯苯 四氯乙烯 1,4-二氯苯 氯乙烯 氯苯 7米2 米 检测结果

2025) 恒安(综)字第(271)号

第 11 页 共 24 页

 $1.4 \times 10^{-3}$ 2.2×10-3  $1.4 \times 10^{-3}$ 5.7×10-5 1.1×10-3 1.2×10-5  $4 \times 10^{-5}$  $6 \times 10^{-4}$ 4×10-6 4×10-6  $4 \times 10^{-6}$  $3 \times 10^{-6}$ 5×10-6 1.2×10-5  $1.1 \times 10^{-4}$ 5×10-6  $8 \times 10^{-5}$ 8×10-5 加\*\*\*的检测因子分包给江苏格林勒斯检测科技有限公司,该部分检测结果引用江苏格林勒斯检测科技有限公司报告编号 GE2504172801A1, CMA 证书号 2.2×10<sup>-3</sup>L 5.7×10-5L 1.4×10<sup>-3</sup>L 1.4×10<sup>-3</sup>L 1.2×10-5L 1.1×10-4L 0×10-4L 4×10-5L 2.8×10-3  $4 \times 10^{-6}$ L 4×10-eL 2×10-eL 3.03×10-4 8×10-5L 4×10-6L 5.57×10<sup>-4</sup> 79-01×5 8×10-5L 0.03 2.2×10<sup>-3</sup>L 5.7×10-5L 1.4×10<sup>-3</sup>L 1.4×10-3L 1.2×10-5L 1.1×10<sup>-4</sup>L 6×10<sup>-4</sup>L 4×10-5L 2.4×10<sup>-3</sup> 4×10-eL 4×10-6L 4×10-6L 4.7×10-5 1.2×10-5L 8×10-2L 79-01×5 8×10-5L 2×10-eL 0.01L 未检出以"检出限七"表示,检出限见上表及表3。 1.4×10-3L 2.2×10<sup>-3</sup>L 1.4×10<sup>-3</sup>L 5.2×10<sup>-4</sup> 1.2×10-5L 3.13×10-4 4×10-5L 1.1×10<sup>-4</sup>L 6×10<sup>-4</sup>L 4.2×10-3 4×10-eL 4×10-6L 2×10-eL 5.56×10-4 8×10-5L 4×10-6L 2×10-eL 8×10-5L 0.50 231012341317; 2.2×10<sup>-3</sup>L 1.4×10-3L 1.2×10-5L 1.4×10<sup>-3</sup>L  $3.4 \times 10^{-4}$ 1.1×10<sup>-4</sup>L 0×10<sup>4</sup>L 4×10-5L 4×10-6L 4×10-6L 5.2×10-5 1.2×10-5L 3×10-5L 2.8×10-3 4×10-6L 5×10-6L 8×10-5L 2×10-6L 1.16 2.2×10<sup>-3</sup>L 2.0×10-4 5.7×10°5L 1.2×10-5L 0×10⁴L 1.4×10-3L 1.4×10-3L 3.0×10<sup>-3</sup> 4×10-eL 3.9×10<sup>-5</sup> 8×10-5L 1.1×10<sup>-4</sup>L 4×10-6L 2×10-eL 9.6×10-5 4×10-6L 5×10-6L 8×10-5L 0.39 mg/L 1,3,5-三氯苯\* 1,2,4-三氯苯\* 三氯苯\* 1,2,3-三氯苯\* 间二甲苯+对二甲苯 可萃取性石油烃 茚并[1,2,3-cd]芘 二苯并[a,h]蒽 苯并[b] 荧蒽 苯并[k]荧蒽 苯并[a]芘 苯并[a]蒽 邻二甲苯 (C10-C40) 硝基苯 2-氯酚 田茶 苯胺 茶 祖 洪 检测结果 タ

2025) 恒安(综)字第(271)号

第 12 页 共 24 页

(2025) 恒安(線)字第(271)号

|   | 监测点位     | GW3                            | GW2                            |     |
|---|----------|--------------------------------|--------------------------------|-----|
|   | 27 14 DA | N: 32.089970°                  | N: 32.090495°                  |     |
|   | 空纬度      | E: 120.518388°                 | E: 120.519523°                 | 松出限 |
| 1 |          | 2500448D3-001<br>2500448D3-002 | 2500448D2-001<br>2500448D2-002 |     |
| 1 |          | 无色透明                           | 无色透明                           |     |
|   | 无量纲      | 7.5                            | 7.2                            |     |
|   | ၁့       | 12.6                           | 12.6                           |     |
|   | 1        | 无                              | 无                              |     |
|   |          | 无                              | 无                              |     |
|   | NTO      | 30                             | 36                             |     |
|   | 政        | SL                             | SL                             |     |
|   | mg/L     | 150                            | 157                            |     |
|   | mg/L     | 313                            | 326                            |     |
|   | mg/L     | 14                             | 16                             |     |
|   | mg/L     | 38                             | 38                             |     |
|   | mg/L     | 0.0003L                        | 0.0003L                        |     |
|   | mg/L     | 0.05L                          | 0.05L                          |     |
|   | mg/L     | 3.8                            | 2.8                            |     |

第13页共24页

|       |        |       |       |        |      |        |        |      |        | -                     |       |      |                      |                       |                      |         |                       |                      |
|-------|--------|-------|-------|--------|------|--------|--------|------|--------|-----------------------|-------|------|----------------------|-----------------------|----------------------|---------|-----------------------|----------------------|
| ,     | ī      | 1     | ,     |        | 1    |        |        |      |        | r                     | 1     | ı    | 3                    | 1                     | r                    | ı       | · ·                   | T                    |
| 0.112 | 0.003L | 0.006 | 0.380 | 0.004L | 0.47 | T900'0 | 0.004L | 0.13 | 0.004L | 1.26×10 <sup>-2</sup> | 0.07L | 16.0 | $4\times10^{-4}$ L   | 1.65×10 <sup>-3</sup> | 2.3×10-3             | 5×10-3L | 1.01×10 <sup>-3</sup> | $1 \times 10^{-3}$ L |
| 0.354 | 0.003L | 0.018 | 0.189 | 0.004L | 0.46 | 0.006L | 0.004L | 0.85 | 0.011  | 6.72×10 <sup>-2</sup> | 0.46  | 17.8 | 4×10 <sup>-4</sup> L | 2.47×10 <sup>-3</sup> | 2.0×10 <sup>-3</sup> | 2×10-2L | 3.06×10 <sup>-3</sup> | 3×10 <sup>-3</sup>   |
| mg/L  | mg/L   | mg/L  | mg/L  | mg/L   | mg/L | mg/L   | mg/L   | mg/L | mg/L   | mg/L                  | mg/L  | mg/L | mg/L                 | mg/L                  | mg/L                 | mg/L    | mg/L                  | mg/L                 |
| 氨氮    | 硫化物    | 亚硝酸盐氮 | 硝酸盐氮  | 总氰化物   | 氟化物  | 碘化物    | 六价格    | 铁    | 街      | 幹                     | 铝     | 纳    | 硒                    | 袋                     | 神                    | н       | 伸                     | 铝                    |
|       |        |       |       |        |      |        |        | 犁    | 屋 状    | 田田                    |       |      |                      |                       |                      |         |                       |                      |

(2025) 恒安(综)字第(271)号

116

第 14 页 共 24 页

 $1.5 \times 10^{-3}$ 1.2×10-3  $1.4 \times 10^{-3}$  $1.2 \times 10^{-3}$  $1.2 \times 10^{-3}$  $1.1{\times}10^{\text{-}3}$  $1.0 \times 10^{-3}$  $1.4 \times 10^{-3}$  $1.5 \times 10^{-3}$  $1.1 \times 10^{-3}$  $1.2 \times 10^{-3}$  $1.5 \times 10^{-3}$  $1.2 \times 10^{-3}$  $1.4 \times 10^{-3}$ 1.2×10<sup>-3</sup>L 1.1×10<sup>-3</sup>L 1.0×10<sup>-3</sup>L 1.5×10-3L 1,4×10-3L 1.2×10-3L 1.4×10<sup>-3</sup>L 1.2×10<sup>-3</sup>L 1.2×10-3L 1.5×10-3L 1.1×10-3L 1.2×10-3L 1.4×10<sup>-3</sup>L 1.5×10<sup>-3</sup>L  $1.2 \times 10^{-3}$ L 1.5×10-3L 4×10-5L 1.2×10-3L 1.4×10-3L 1.4×10-3L  $1.4 \times 10^{-3}$ L 1.5×10-3L 1.2×10-3L 1.2×10-3L 1.2×10-3L  $1.1\times10^{-3}L$ 1.2×10<sup>-3</sup>L  $1.1\times10^{-3}L$ 1.2×10<sup>-3</sup>L 4×10-5L 4.3×10<sup>-3</sup>  $1.0 \times 10^{-3}$ L 1.5×10-3L 1.5×10<sup>-3</sup>L 1.2×10<sup>-3</sup>L 1.2×10-3L 1.5×10<sup>-3</sup>L 1.4×10-3L mg/L 顺式-1,2-二氯乙烯 反式-1,2-二氯乙烯 1,1,1,2-四氯乙烷 1,1,2,2-四氯乙烷 1,1-二氯乙烷 1,1,1-三氯乙烷 1,1,2-三氯乙烷 1,2,3-三氯丙烷 1,2-二氯乙烷 1,1-二氯乙烯 1,2-二氯丙烷 四氯化碳 二氯甲烷 三氯乙烯 氣仿 氯乙烯 米 检测结果

2025) 恒安(综)字第(271)号

第 15 页 共 24 页

|          | 氯苯          | mg/L | 1.0×10 <sup>-3</sup> L | 1.0×10 <sup>-3</sup> L | 1.0×10 <sup>-3</sup> |
|----------|-------------|------|------------------------|------------------------|----------------------|
|          | 1,2-二氯苯     | mg/L | 7 <sub>0</sub> 10-8    | $8 \times 10^{-4}$ L   | 8×10-4               |
|          | 1,4-二.氮苯    | mg/L | 8×10-4L                | $8 \times 10^{-4}$ L   | 8×10 <sup>-4</sup>   |
|          | *2          | mg/L | N+10-4L                | 8×10-4L                | 8×10-4               |
|          | 苯乙烯         | mg/L | 7 <sub>1</sub> -01×9   | 6×10 <sup>-4</sup> L   | 6×10 <sup>-4</sup>   |
|          | 甲苯          | mg/L | 1.4×10³L               | 1.4×10³L               | 1.4×10 <sup>-3</sup> |
|          | 间, 对-二甲苯    | mg/L | 2.2×10 <sup>-3</sup> L | 2.2×10 <sup>-3</sup> L | 2.2×10 <sup>-3</sup> |
|          | 邻-二甲苯       | mg/L | 1.4×10 <sup>-3</sup> L | 1.4×10³L               | 1.4×10 <sup>-3</sup> |
| 쇧        | 氯丁二烯        | mg/L | 1.5×10 <sup>-3</sup> L | 1.5×10³L               | 1.5×10 <sup>-3</sup> |
| 世 溪      | 2,2-二氯丙烷    | mg/L | 1.5×10³L               | 1.5×10³L               | 1.5×10 <sup>-3</sup> |
| <b>K</b> | 溴氯甲烷        | mg/L | 1.4×10 <sup>-3</sup> L | 1.4×10 <sup>-3</sup> L | 1.4×10 <sup>-3</sup> |
|          | 1,1-二氯丙烯    | mg/L | 1.2×10 <sup>-3</sup> L | 1.2×10³L               | 1.2×10 <sup>-3</sup> |
|          | 环氧氯丙烷       | mg/L | 5.0×10-3L              | 5.0×10 <sup>-3</sup> L | 5.0×10 <sup>-3</sup> |
|          | 二溴甲烷        | mg/L | 1.5×10³L               | 1.5×10 <sup>-3</sup> L | 1.5×10 <sup>-3</sup> |
|          | 一溴二氯甲烷      | mg/L | 4.8×10 <sup>-3</sup>   | 3.9×10 <sup>-3</sup>   | 1.3×10 <sup>-3</sup> |
|          | 顺式-1,3-二氯丙烯 | mg/L | 1.4×10³L               | 1.4×10³L               | 1,4×10 <sup>-3</sup> |
|          | 反式-1,3-二氯丙烯 | mg/L | 1.4×10 <sup>-3</sup> L | 1.4×10³L               | 1.4×10 <sup>-3</sup> |
|          | 1,3-二氯丙烷    | mg/L | 1.4×10³L               | 1.4×10³L               | 1,4×10 <sup>-3</sup> |
|          | 二溴氯甲烷       | mg/L | 6.4×10-3               | 5.6×10 <sup>-3</sup>   | 1.2×10 <sup>-3</sup> |

(2025) 恒安(综)字第(271)号

118

第 16 页 共 24 页

| Q×10-4L | 7×10 <sup>-4</sup> L | 8×10-4L              |         |                        |                           |                      |                        |                                                  |                                                          |                        |                                                                          |                                                                                                      |                                                                                                                          |                                                                                                                                            |                                                                                                                                           |                                                                                                                                                                  |
|---------|----------------------|----------------------|---------|------------------------|---------------------------|----------------------|------------------------|--------------------------------------------------|----------------------------------------------------------|------------------------|--------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|         |                      | ×8                   | 7+01-4L | 1.0×10 <sup>-3</sup> L | $T \times 10^{-4} \Gamma$ | 0×10-4L              | 1.2×10 <sup>-3</sup> L | 8×10⁴L                                           | $1.0 \times 10^{-3}$ L                                   | 1.2×10 <sup>-3</sup> L | $3\times10^{-4}$ L                                                       | $1.0 \times 10^{-3}L$                                                                                | $1.0 \times 10^{-3}$ L                                                                                                   | $T_{\text{P-}}01 \times 9$                                                                                                                 | 4×10-5L                                                                                                                                   | 5.7×10-5L                                                                                                                                                        |
| 7-01-9  | 7×10-4L              | 8×10 <sup>-4</sup> L | 7≻10-4L | 1.0×10 <sup>-3</sup> L | 7×10-4L                   | 7 <sub>0</sub> ×10.4 | 1.2×10 <sup>-3</sup> L | 8×10 <sup>-4</sup> L                             | 1.0×10 <sup>-3</sup> L                                   | 9.6×10 <sup>-3</sup>   | 8×10 <sup>-4</sup> L                                                     | 1.0×10 <sup>-3</sup> L                                                                               | 1.0×10 <sup>-3</sup> L                                                                                                   | J-010-9                                                                                                                                    | 4×10 <sup>-5</sup> L                                                                                                                      | 5.7×10 <sup>-5</sup> L                                                                                                                                           |
| mg/L    | mg/L                 | mg/L                 | mg/L    | mg/L                   | mg/L                      | mg/L                 | mg/L                   | mg/L                                             | mg/L                                                     | mg/L                   | mg/L                                                                     | mg/L                                                                                                 | mg/L                                                                                                                     | mg/L                                                                                                                                       | mg/L                                                                                                                                      | mg/L                                                                                                                                                             |
| 溴仿      | 异丙苯                  | 溴苯                   | 正丙苯     | 2-氯甲苯                  | 1,3,5-三甲基苯                | 4-氯甲苯                | 叔丁基苯                   | 1,2,4三甲基苯                                        | 仲丁基苯                                                     | 1,3-二氮苯                | 4-异丙基甲苯                                                                  | 正丁基苯                                                                                                 | 1,2-二溴-3-氯丙烷                                                                                                             | 六氯丁二烯                                                                                                                                      | 硝基苯                                                                                                                                       | 苯胺                                                                                                                                                               |
|         |                      |                      |         |                        |                           |                      |                        | 身丙苯<br>沒本<br>正丙苯<br>2-氯甲苯<br>1,3,5-三甲基苯<br>4-氯甲苯 | 身丙苯<br>沒本<br>正丙苯<br>2-氯甲苯<br>1,3,5-三甲基苯<br>4-氯甲苯<br>极丁基苯 |                        | 身丙苯<br>沒本<br>正丙苯<br>2-氯甲苯<br>1,3,5-三甲基苯<br>4-氯甲苯<br>极丁基苯<br>何丁基苯<br>仲丁基苯 | 身丙苯<br>迎本<br>正丙苯<br>2-氯甲苯<br>1,3,5-三甲基苯<br>4-氯甲苯<br>叔丁基苯<br>1,2,4-三甲基苯<br>仲丁基苯<br>1,3-二氮苯<br>4-异丙基甲苯 | 身內茶       沒來       2-氯甲基苯       1,3,5-三甲基苯       板丁基苯       1,2,4-三甲基苯       中丁基苯       1,3-二氯苯       4-异丙基甲苯       正丁基苯 | 身丙苯       選表       2-氯甲基苯       1,3,5-三甲基苯       4-氯甲苯       1,2,4-三甲基苯       中丁基苯       1,3-二氮苯       4-异丙基甲苯       正丁基苯       1,2溴-3-氯丙烷 | 身丙茶       渡來       2-氯甲基末       1,3,5-三甲基末       板丁基苯       1,2,4-三甲基末       仲丁基苯       1,3-二氮苯       五丁基苯       1,2-二溴-3-氯丙烷       六氯丁二烯 | 身丙苯       近丙苯       2-氯甲基苯       1,3,5-三甲基苯       4-氯甲苯       1,2,4-三甲基苯       1,3-二氮苯       4-异丙基甲苯       正丁基苯       正丁基苯       1,2-二溴氯丙烷       六氯丁二烯       硝基苯 |

JSHA-TR-32-01(2023)

(2025) 恒安(综)字第(271)号

119

(2025) 恒安(综)字第(271)号

|     | 茶         | 苯并[a]蒽                                         | mg/L     | 1.2×10°5L                                                                                               | 1.2×10 <sup>-5</sup> L                                                | 1.2×10-5             |
|-----|-----------|------------------------------------------------|----------|---------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|----------------------|
|     | 挆         | 苯并[a]芘                                         | mg/L     | 4×10-6L                                                                                                 | 4×10 <sup>-6</sup> L                                                  | 4×10-6               |
|     | 株         | 苯并[b]荧蒽                                        | mg/L     | 4×10-6L                                                                                                 | 4.2×10 <sup>-5</sup>                                                  | 4×10-6               |
|     | *         | 苯并[k]荧蒽                                        | mg/L     | 4×10°L                                                                                                  | 4×10°6L                                                               | 4×10-6               |
|     |           | 苗                                              | mg/L     | 3×10•€L                                                                                                 | 5×10°L                                                                | 5×10-6               |
| 望 戻 | * 11      | 二苯并[a,h]蒽                                      | T/Bm     | 3.7×10 <sup>-5</sup>                                                                                    | 1.04×10 <sup>-4</sup>                                                 | 3×10-6               |
| 北田  | 茚并[       | 茚并[1,2,3-cd]芘                                  | mg/L     | 2×10-6L                                                                                                 | 2×10-eL                                                               | 5×10-6               |
| *   |           | 茶                                              | mg/L     | 1.2×10 <sup>-5</sup> L                                                                                  | 1.2×10-5L                                                             | 1.2×10-5             |
|     | 可萃月       | 可萃取性石油烃<br>(C <sub>10</sub> -C <sub>40</sub> ) | T/gm     | 0.01L                                                                                                   | 0.03                                                                  | ,                    |
|     |           | 1,2,4-三氯苯*                                     | mg/L     | 8×10-⁵L                                                                                                 | 8 × 10-21                                                             | 8×10-5               |
|     | 三氯苯*      | 1,2,3-三氯苯*                                     | mg/L     | T <sub>5</sub> -01×8                                                                                    | 3 T <sub>s</sub> -01×8                                                | 8×10-5               |
|     |           | 1,3,5-三氯苯*                                     | mg/L     | 1.1×10 <sup>-4</sup> L                                                                                  | 1.1×10 <sup>-4</sup> L                                                | 1.1×10 <sup>-4</sup> |
|     |           |                                                |          | 以下空白                                                                                                    |                                                                       |                      |
|     |           |                                                |          |                                                                                                         |                                                                       |                      |
|     |           |                                                |          |                                                                                                         |                                                                       |                      |
|     |           |                                                |          |                                                                                                         |                                                                       |                      |
|     | 加"*"的检测因子 | 验测因子分包给                                        | 江苏格林勒    | 斯检测科技有限公司,该部分检测结果引用江苏格林                                                                                 | 分包给江苏格林勒斯检测科技有限公司,该部分检测结果引用江苏格林勒斯检测科技有限公司报告编号 GE2504172801A1, CMA 证书号 | MA 证书号               |
| 备注  |           |                                                | 1000000  | 231012341317;                                                                                           | M1 - / H2 C1 H2-777 C C C C C C C C C C C C C C C C C C               |                      |
|     |           |                                                | 25004481 | Z200448DZ-00Z 定 Z200448DZ-001 的现场平行柱; Z200448D3-00Z 是 Z500448D3-001 的现场平行柱;<br>未检出以"检出限七"表示,检出限见上表及表 3。 | -002 是 2500448D3-001 的规场平行秤;<br>1上表及表 3。                              |                      |

第 17 页 共 24 页

8.38 无量纲

检出限

2500448T7-001

2500448T6-001

2500448T5-001

2500448T4-001

2500448T3-001 0-0.5m

2500448T2-001

2500448T1-001 2500448T1-002

样品编号

0-0.5m

0-0.5m

层次

黄棕

黄棕

黄棕

黄棕

黄棕

黄棕

黄棕

颜色 湿度

+

+

+

+

+

0-0.5m

0-0.5m

0-0.5m

0-0.5m

少量根系

少量根系

少量根系

少量根系

少量根系

少量根系

少量根系

其他异物

8.31

8.32

8.25

8.27

8.24

8.27

ND

ND

ND

ND

ND

ND

ND 2.18 0.16

2.34

1.79

2.10 0.15

2.05 0.11

2.68

0.21

54

35

39

91

09

32

22

mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg

石油烃 (C10-C40)

pH 值

六价铬

总砷

检测结果

ෞ 铜 铅

0.14

0.25

0.11

9

Ξ

2

3

2

10

9

24.5 0.013

41.6 0.021

9.81

0.011

0.012 17.5

0.010

0.011

总汞 徺

18.4

37.9 0.020

21.8

34 ND

30 ND

33

28

40

41

38 ND

ND

ND ND

ND ND

ND ND

1,2-二氯丙烷

N:32.060215° E:120.519423°

N:32.090258° E:120.519600°

N:32.089986° E:120.518401°

N:32.090223° E:120.519296°

N:32.089589° E:120.518493°

N:32.089516° E:120.519399°

N:32.089034° E:120.518940°

2025.04.17

采样 日期

DT1

CT2

表 2 土壤检测结果

BT2

BTI

AT1

斯河

2025) 恒安(综)字第(271)号

JSHA-TR-32-01(2023)

| ON           |  |
|--------------|--|
| ND           |  |
| ON           |  |
| ND           |  |
| ND           |  |
| ND           |  |
| ND           |  |
| mg/kg        |  |
| 1,1,1,2-四氯乙烷 |  |

18 页 共 24 页

 $1.2 \times 10^{-3}$  $1.1 \times 10^{-3}$ 

第 19 页 共 24 页

| mg/kg                    |             | Q S | Q S   | QN S  | 1.2×10 <sup>-3</sup> |
|--------------------------|-------------|-----|-------|-------|----------------------|
| mg/kg ND N<br>mg/kg ND N | ON ON ON ON | S S | QN QN | QN QN | 1.4×10 <sup>-3</sup> |
| mg/kg ND ND              | ON ON O     | QN  | ND    | QN    | 1.2×10-3             |
| mg/kg ND N               | UN UN UN    | QN  | ND    | ON    | 1.2×10 <sup>-3</sup> |
| mg/kg ND                 | ND ND UN    | QN  | ND    | QN    | 1.2×10-3             |
| mg/kg ND                 | ND ND ND    | QN  | ND    | ND    | 1.0×10 <sup>-3</sup> |
| mg/kg ND                 | ND ND ND    | QN  | ND    | ND    | 1.3×10 <sup>-3</sup> |
| mg/kg ND                 | ND ND ND    | ND  | ND    | ND    | 1.1×10-3             |
| mg/kg ND                 | UN UN UN    | ND  | ND    | ND    | 1.0×10-3             |
| mg/kg ND                 | ND ND ND    | ND  | ND    | ND    | 1.2×10 <sup>-3</sup> |
| mg/kg ND                 | ND ND UN    | ND  | ND    | QN    | 1.3×10-3             |
| mg/kg ND N               | ND ND ND    | ND  | QN    | ND    | 1.0×10-3             |
| mg/kg ND                 | ND ND ND    | ND  | QN    | ND    | 1.3×10-3             |
| mg/kg ND                 | UN ON ON    | QN  | ND    | ND    | 1.4×10-3             |
| mg/kg ND h               | ND ND ND    | ND  | ND    | ND    | 1.5×10 <sup>-3</sup> |
| mg/kg ND N               | ND ND ON    | ND  | ND    | ND    | 1.9×10 <sup>-3</sup> |
| mg/kg ND ND              | ON ON O     | ND  | ND    | ND    | 1.2×10 <sup>-3</sup> |
| mg/kg ND N               | ND ND ND    | ND  | QN    | ND    | 1.5×10 <sup>-3</sup> |
| mg/kg ND                 | CN CN       | QN  | ND    | QN    | 1.5×10 <sup>-3</sup> |

(2025) 恒安(综)字第(271)号

(2025) 恒安(综)字第(271)号

|     | 10.000   | 乙苯            | mg/kg | ND | QN                  | ND                           | ND                                                        | ND  | QN  | ND | 1.2×10 <sup>-3</sup> |
|-----|----------|---------------|-------|----|---------------------|------------------------------|-----------------------------------------------------------|-----|-----|----|----------------------|
|     | +RT      | 苯乙烯           | mg/kg | QN | QN                  | QN                           | QN                                                        | ND  | ND  | ND | 1.1×10 <sup>-3</sup> |
|     |          | 甲苯            | mg/kg | ND | ON                  | ND                           | ND                                                        | ND  | ND  | ND | 1.3×10 <sup>-3</sup> |
|     | 间二甲氮     | 间二甲苯+对二甲苯     | mg/kg | ND | ON                  | ND                           | ND                                                        | QN  | ND  | QN | 1.2×10-3             |
|     | <b>邻</b> | 邻二甲苯          | mg/kg | QN | ON                  | QN                           | ND                                                        | ND  | ND  | ON | 1.2×10-3             |
|     | 1 0 1    | 1,2,4-三氯苯     | mg/kg | ND | ON                  | QN                           | ND                                                        | ND  | ND  | QN | 3×10 <sup>-4</sup>   |
|     |          | 1,2,3-三氯苯     | mg/kg | ND | ND                  | ND                           | ND                                                        | ND  | ND  | QN | 2×10-4               |
|     | 1,3-     | 1,3-二氯苯       | mg/kg | ND | ND                  | QN                           | QN                                                        | ND  | ND  | ND | 1.5×10-3             |
| 华   | 也        | 硝基苯           | mg/kg | ND | ND                  | ND                           | ND                                                        | ND  | ND  | QN | 0.09                 |
| 展   |          | 苯胺            | mg/kg | ND | ND                  | ND                           | ND                                                        | ND  | ND  | ND | 90.0                 |
| 岩 果 | 2-       | 2-氣酚          | mg/kg | ND | QN                  | ND                           | ND                                                        | ND  | ND  | ND | 90.0                 |
|     | 茶        | 苯并(a)蒽        | mg/kg | ND | ND                  | QN                           | ND                                                        | ON  | ND  | ND | 0.1                  |
|     | 株        | 苯并(a)芘        | mg/kg | ND | ND                  | QN                           | ND                                                        | 0.1 | 0.1 | QN | 0.1                  |
|     | 苯并       | 苯并(b)荧蒽       | mg/kg | ND | ND                  | ND                           | ON                                                        | QN  | QN  | ND | 0.2                  |
|     | 苯并       | 苯并(k)荧蒽       | mg/kg | ND | ND                  | QN                           | QN                                                        | ND  | QN  | ND | 0.1                  |
|     |          | 旗             | mg/kg | ND | ND                  | ND                           | QN                                                        | ND  | ND  | ND | 0.1                  |
|     |          | 二苯并(a,h)蒽     | mg/kg | ND | ND                  | ND                           | ND                                                        | ND  | ND  | ND | 0.1                  |
|     | 茚并(1     | 茚并(1,2,3-cd)芘 | mg/kg | ND | ND                  | ND                           | ND                                                        | ND  | ND  | ND | 0.1                  |
|     |          | 茶             | mg/kg | QN | QN                  | ND                           | ND                                                        | QN  | ND  | ND | 60.0                 |
| 备注  |          |               |       |    | 2500448T1.<br>"ND"表 | -002 是 25004487<br>5示未检出, 检出 | 2500448TI-002 是 2500448TI-001 的现场平行样"ND"表示未检出,检出限见上表及表 3。 | 样;  |     |    |                      |

第 20 页 共 24 页

表 3 检测依据及相关信息

| 类别  | 检测项目           | 检测依据                                                                  | 检出限        | 检测仪器        | 仪器型号      | 仪器编号                       |
|-----|----------------|-----------------------------------------------------------------------|------------|-------------|-----------|----------------------------|
|     | -              | 《地下水环境监测技术规范》<br>HJ 164-2020                                          | -          | -           | -         | -                          |
|     | -              | 《地块土壤和地下水中挥发性有机物<br>采样技术导则》HJ 1019-2019                               | -          | -           | -         | -                          |
|     | pH 值           | 《水质 pH 值的测定 电极法》                                                      |            | 便携式         | GTPH30    | HAYQ-123-03                |
|     | Promi          | HJ 1147-2020                                                          |            | pH/ORP 计    | TS-100    | HAYQ-123-04                |
|     | 水温             | 《水质 水温的测定 温度计或颠倒温度计测定法》GB/T 13195-1991<br>只用: 3.1 水温计法                | -          | 水温计         | -         | HAYQ-136-03<br>HAYQ-136-04 |
|     | 臭和味            | 《生活饮用水标准检验方法 第4部分: 感官性状和物理指标》<br>GB/T 5750.4-2023<br>只用: 6.1 嗅气和尝味法   | -          | -           | -         | -                          |
| 地下水 | 肉眼可见物          | 《生活饮用水标准检验方法 第4部分: 感官性状和物理指标》<br>GB/T 5750.4-2023<br>只用:7.1 直接观察法     | -          | -           | -         | -                          |
|     | 浊度             | 《水质 浊度的测定 浊度计法》<br>HJ 1075-2019                                       | 0.3NTU     | 便携式<br>浊度计  | WZB-171   | HAYQ-162-03<br>HAYQ-162-04 |
|     | 色度             | 《生活饮用水标准检验方法 第4部分: 感官性状和物理指标》<br>GB/T 5750.4-2023<br>只用: 4.1 铂-钴标准比色法 | 5度         | -           | -         | -                          |
|     | 六价铬            | 《水质 六价铬的测定 二苯碳酰二肼<br>分光光度法》GB/T 7467-1987                             | 0.004mg/L  | 可见分光<br>光度计 | T6 新悦     | HAYQ-112-03                |
|     | 钙、镁总量<br>(总硬度) | 《水质 钙、镁总量的测定 EDTA 滴<br>定法》GB/T 7477-1987                              | 5.0mg/L    | -           | -         | -                          |
|     | 溶解性总固体         | 《生活饮用水标准检验方法 第 4 部<br>分:感官性状和物理指标》                                    | Ama/I      | 分析天平        | ATY224R   | HAYQ-022-02                |
|     | 1177711170日件   | GB/T5750.4-2023<br>只用: 11.1 称量法                                       | 4mg/L      | 干燥箱         | DHG-9030A | HAYQ-026-01                |
|     | 硫酸盐            | 《水质 硫酸盐的测定 铬酸钡分光光<br>度法(试行)》HJ/T 342-2007                             | 2mg/L      | 可见分光<br>光度计 | T6 新悦     | HAYQ-112-03                |
|     | 氯化物            | 《水质 氯化物的测定 硝酸银滴定<br>法》GB/T 11896-1989                                 | 2mg/L      | -           | -         | -                          |
|     | 挥发酚            | 《水质 挥发酚的测定 4-氨基安替比<br>林分光光度法》HJ 503-2009                              | 0.0003mg/L | 可见分光 光度计    | T6 新悦     | HAYQ-112-02                |

第 21 页 共 24 页

|     | 阴离子表面<br>活性剂 | 《水质 阴离子表面活性剂的测定 亚甲蓝分光光度法》GB/T 7494-1987                                                                                                                                            | 0.05mg/L                  | 紫外可见<br>分光光度计         | T6 新世纪         | HAYQ-031-02 |
|-----|--------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|-----------------------|----------------|-------------|
|     | 高锰酸盐指数       | 《水质 高锰酸盐指数的测定》<br>GB/T 11892-1989                                                                                                                                                  | 0.5mg/L                   | -                     | -              | -           |
|     | 氨氮           | 《水质 氨氮的测定 纳氏试剂分光光<br>度法》HJ 535-2009                                                                                                                                                | 0.025mg/L                 | 紫外可见<br>分光光度计         | 759S           | HAYQ-031-01 |
|     | 硫化物          | 《水质 硫化物的测定 亚甲基蓝分光<br>光度法》HJ 1226-2021                                                                                                                                              | 0.003mg/L                 | 紫外可见<br>分光光度计         | 759S           | HAYQ-031-01 |
|     | 亚硝酸盐氮        | 《水质 亚硝酸盐氮的测定 分光光度<br>法》GB/T 7493-1987                                                                                                                                              | 0.003mg/L                 | 紫外可见<br>分光光度计         | T6 新世纪         | HAYQ-031-03 |
|     | 硝酸盐氮         | 《水质 无机阴离子(F·、Cl·、NO <sub>2</sub> ·、<br>Br·、NO <sub>3</sub> ·、PO <sub>4</sub> <sup>3</sup> ·、SO <sub>3</sub> <sup>2</sup> ·、SO <sub>4</sub> <sup>2</sup> ·)的测<br>定 离子色谱法》HJ 84-2016 |                           | 离子色谱仪                 | CIC-100        | HAYQ-045-01 |
|     | 总氰化物         | 《水质 氰化物的测定 容量法和分光<br>光度法》HJ 484-2009<br>只用:异烟酸-吡唑啉酮分光光度法                                                                                                                           | 0.004mg/L                 | 紫外可见<br>分光光度计         | T6 新世纪         | HAYQ-031-03 |
|     | 氟化物          | 《水质 氟化物的测定 离子选择电极<br>法》GB/T 7484-1987                                                                                                                                              | 0.05mg/L                  | 酸度计<br>(pH 计)         | PHS-25         | HAYQ-034-01 |
|     | 碘化物          | 《地下水质分析方法 第 56 部分: 碘<br>化物的测定 淀粉分光光度法》<br>DZ/T 0064.56-2021                                                                                                                        | 0.006mg/L                 | 可见分光<br>光度计           | T6 新悦          | HAYQ-112-03 |
| 地下水 | 铁            | 《水质 32 种金属元素的测定 电感<br>耦合等离子体发射光谱法》<br>HJ 776-2015                                                                                                                                  | 0.02mg/L                  | 电感耦合等<br>离子体发射<br>光谱仪 | Optima8000     | HAYQ-113-01 |
|     | 锰            | 《水质 32 种金属元素的测定 电感<br>耦合等离子体发射光谱法》<br>HJ 776-2015                                                                                                                                  | 0.004mg/L                 | 电感耦合等<br>离子体发射<br>光谱仪 | Optima8000     | HAYQ-113-01 |
|     | 钶            | 《水质 65 种元素的测定 电感耦合<br>等离子体质谱法》HJ 700-2014                                                                                                                                          | 8×10 <sup>-5</sup> mg/L   | 电感耦合等<br>离子体质谱<br>仪   | NexLON<br>1000 | HAYQ-146-01 |
|     | 锌            | 《水质 65 种元素的测定 电感耦合<br>等离子体质谱法》HJ 700-2014                                                                                                                                          | 6.7×10 <sup>-4</sup> mg/L | 电感耦合等<br>离子体质谱<br>仪   | NexLON<br>1000 | HAYQ-146-01 |
|     | 铝            | 《水质 32 种金属元素的测定 电感<br>耦合等离子体发射光谱法》<br>HJ 776-2015                                                                                                                                  | 0.07mg/L                  | 电感耦合等<br>离子体发射<br>光谱仪 | Optima8000     | HAYQ-113-01 |
|     | 钠            | 《水质 32 种金属元素的测定 电感<br>耦合等离子体发射光谱法》<br>HJ 776-2015                                                                                                                                  | 0.12mg/L                  | 电感耦合等<br>离子体发射<br>光谱仪 | Optima8000     | HAYQ-113-01 |
|     | 汞            | 《水质 汞、砷、硒、铋和锑的测定 原子荧光法》HJ 694-2014                                                                                                                                                 | 4×10 <sup>-5</sup> mg/L   | 原子荧光光度计               | AFS-8520       | HAYQ-071-02 |
|     | <b>石</b> 申   | 《水质 汞、砷、硒、铋和锑的测定 原子荧光法》HJ 694-2014                                                                                                                                                 | 3×10 <sup>-4</sup> mg/L   | 原子荧光<br>光度计           | AFS-8520       | HAYQ-071-02 |
|     | 硒            | 《水质 汞、砷、硒、铋和锑的测定 原子荧光法》HJ 694-2014                                                                                                                                                 | 4×10 <sup>-4</sup> mg/L   | 原子荧光<br>光度计           | AFS-8520       | HAYQ-071-02 |

第 22 页 共 24 页

|     | 镉                                              | 《水质 65 种元素的测定 电感耦合<br>等离子体质谱法》HJ 700-2014                               | 5×10 <sup>-5</sup> mg/L   | 电感耦合等<br>离子体质谱<br>仪 | NexLON<br>1000    | HAYQ-146-01 |
|-----|------------------------------------------------|-------------------------------------------------------------------------|---------------------------|---------------------|-------------------|-------------|
|     | 铅                                              | 《水和废水监测分析方法》(第四版<br>增补版)国家环境保护总局(2002年)<br>只用: 3.4.16.5 石墨炉原子吸收法        | 0.001mg/L                 | 石墨炉火焰 一体机           | PinAAcle<br>900T  | HAYQ-145-01 |
|     | 镍                                              | 《水质 65 种元素的测定 电感耦合<br>等离子体质谱法》HJ 700-2014                               | 6×10 <sup>-5</sup> mg/L   | 电感耦合等<br>离子体质谱<br>仪 | NexLON<br>1000    | HAYQ-146-01 |
|     | 挥发性有机物                                         | 《水质 挥发性有机物的测定 吹扫捕集/气相色谱-质谱法》HJ 639-2012                                 | -                         | 气相质谱<br>联用仪         | GCMS-QP<br>2010SE | HAYQ-087-01 |
|     | 环氧氯丙烷                                          | 《水质 挥发性有机物的测定 吹扫捕集/气相色谱-质谱法》HJ 639-2012                                 | 5.0×10 <sup>-3</sup> mg/L | 气相质谱<br>联用仪         | GCMS-QP<br>2010SE | HAYQ-087-01 |
|     | 环氧氯丙烷                                          | 《水质 挥发性有机物的测定 吹扫捕集/气相色谱-质谱法》HJ 639-2012                                 | 5×10 <sup>-3</sup> mg/L   | 气相质谱<br>联用仪         | GCMS-QP<br>2010SE | HAYQ-087-01 |
| 地下水 | 多环芳烃                                           | 《水质 多环芳烃的测定 液液萃取和<br>固相萃取高效液相色谱法》<br>HJ 478-2009 只用: 液液萃取紫外检测<br>器法     |                           | 液相色谱仪               | SPD-20A           | HAYQ-178-01 |
|     | 硝基苯                                            | 《水质 硝基苯类化合物的测定气相<br>色谱-质谱法》HJ 716-2014                                  | -                         | 气相质谱<br>联用仪         | ISQ7000           | HAYQ-087-02 |
|     | 苯胺                                             | 《水质 苯胺类化合物的测定 气相色谱-质谱法》HJ 822-2017                                      | -                         | 气相质谱<br>联用仪         | ISQ7000           | HAYQ-087-02 |
|     | 2-氯酚                                           | 《水质 酚类化合物的测定 液液萃取<br>/气相色谱法》HJ 676-2013                                 | -                         | 气相色谱仪               | 8860<br>(G2790A)  | HAYQ-074-02 |
|     | 可萃取性石油<br>烃(C <sub>10</sub> -C <sub>40</sub> ) | 《水质 可萃取性石油烃(C <sub>10</sub> -C <sub>40</sub> )的<br>测定 气相色谱法》HJ 894-2017 | 0.01mg/L                  | 气相色谱仪               | GC-2030           | HAYQ-157-01 |
|     | 1,2,4-三氯苯                                      | 《水质 氯苯类化合物的测定气相色谱法》HJ 621-2011                                          | 8×10 <sup>-5</sup> mg/L   | 气相色谱仪               | Agilent<br>7890B  | GLLS-JC-110 |
|     | 1,2,3-三氯苯                                      | 《水质 氯苯类化合物的测定气相色谱法》HJ 621-2011                                          | 8×10 <sup>-5</sup> mg/L   | 气相色谱仪               | Agilent<br>7890B  | GLLS-JC-110 |
|     | 1,3,5-三氯苯                                      | 《水质 氯苯类化合物的测定气相色谱法》HJ 621-2011                                          | 1.1×10 <sup>-4</sup> mg/L | 气相色谱仪               | Agilent<br>7890B  | GLLS-JC-110 |
|     | -                                              | 《土壤环境监测技术规范》<br>HJ/T 166-2004                                           | -                         | -                   | -                 | -           |
|     | -                                              | 《地块土壤和地下水中挥发性有机物<br>采样技术导则》HJ 1019-2019                                 | -                         | -                   | -                 | -           |
|     | pH 值                                           | 《土壤 pH 值的测定 电位法》<br>HJ 962-2018                                         |                           | 酸度计<br>(PH 计)       | S220              | HAYQ-034-02 |
| 土壤  | 六价铬                                            | 《土壤和沉积物 六价铬的测定 碱溶液提取-火焰原子吸收分光光度法》<br>HJ 1082-2019                       | 0.5mg/kg                  | 原子吸收<br>分光光度计       | TAS-990F          | HAYQ-029-01 |
|     | 总砷                                             | 《土壤质量 总汞、总砷、总铅的测定<br>原子荧光法 第2部分:土壤中总砷的<br>测定》GB/T22105.2-2008           | 0.01mg/kg                 | 原子荧光<br>光度计         | AFS-8520          | HAYQ-071-02 |
|     | 镉                                              | 《土壤质量 铅、镉的测定 石墨炉原子吸收分光光度法》GB/T 17141-1997                               | 0.01mg/kg                 | 石墨炉火焰<br>一体机        | PinAAcle<br>900T  | HAYQ-145-01 |

第 23 页 共 24 页

### (2025) 恒安(综)字第(271)号

|    | 石油烃<br>(C <sub>10</sub> -C <sub>40</sub> ) | 《土壤和沉积物 石油烃(C <sub>10</sub> -C <sub>40</sub> )的<br>测定 气相色谱法》HJ 1021-2019 | 6mg/kg     | 气相色谱仪         | GC-2030           | HAYQ-157-01 |
|----|--------------------------------------------|--------------------------------------------------------------------------|------------|---------------|-------------------|-------------|
|    | 半挥发性<br>有机物                                | 《土壤和沉积物 半挥发性有机物的<br>测定 气相色谱-质谱法》HJ 834-2017                              | -          | 气相质谱联<br>用仪   | ISQ7000           | HAYQ-087-02 |
|    | 挥发性<br>有机物                                 | 《土壤和沉积物 挥发性有机物的测<br>定吹扫捕集/气相色谱-质谱法》<br>HJ 605-2011                       | -          | 气相质谱联<br>用仪   | GCMS-QP<br>2010SE | HAYQ-087-03 |
| 土壤 | 镍                                          | 《土壤和沉积物 铜、锌、铅、镍、铬<br>的测定 火焰原子吸收分光光度法》<br>HJ 491-2019 只用: 土壤电热板消解法        | 3mg/kg     | 原子吸收<br>分光光度计 | TAS-990F          | HAYQ-029-02 |
|    | 总汞                                         | 《土壤质量 总汞、总砷、总铅的测定<br>原子荧光法 第1部分:土壤中总汞的<br>测定》GB/T 22105.1-2008           | 0.002mg/kg | 原子荧光<br>光度计   | AFS-8520          | HAYQ-071-02 |
|    | 铅                                          | 《土壤质量 铅、镉的测定 石墨炉原子吸收分光光度法》GB/T 17141-1997                                | 0.1mg/kg   | 石墨炉火焰<br>一体机  | PinAAcle<br>900T  | HAYQ-145-01 |
|    | 铜                                          | 《土壤和沉积物 铜、锌、铅、镍、铬<br>的测定 火焰原子吸收分光光度法》<br>HJ 491-2019 只用:土壤电热板消解法         | lmg/kg     | 原子吸收<br>分光光度计 | TAS-990F          | HAYQ-029-02 |

\*\*\*报告结束\*\*\*



第 24 页 共 24 页

## 检测报告 TEST REPORT

(2025) 恒安(水)字第(478)号



 检测类别:
 委托检测

 项目名称:
 地下水检测

委托单位: 江苏隆昌化工有限公司

江苏恒安检测技术有限公司

JiangSu HengAn Detection Technology Co., Ltd.

二〇二五年六月

第1页共6页

#### 声明

- 一、用户对本报告若有异议,可在收到本报告后7日内,向本公司提出书面申诉,超过申诉期限,概不受理。
- 二、本报告无编制、复核、审核及授权签字人签名无效,未加盖检验检测 专用章、骑缝章无效。
- 三、未经许可,不得复制本报告;任何对本报告的涂改、伪造、变更及不 当使用均无效,其责任人将承担相关法律及经济责任,本公司保留对上述行为 追究法律责任的权利。
- 四、本报告检测结果仅对被测地点、对象及当时情况有效;由其他单位或 个人采集送检的样品,本公司仅对送检样品的检测结果负责,委托方对送检样 品及其相关信息的真实性负责。
- 五、不包含 CMA 资质认定标志的报告仅用于科研、教学或企业内部质量控制活动使用,检测数据和结果仅供参考用,不具有社会证明作用。
  - 六、本公司对本报告的检测数据保守秘密。
  - 七、未经本公司书面同意, 该检验报告不得用于商业性宣传。

地 址:南通市崇川区观音山街道胜利路 168 号 2 幢 4 层 5 层

邮政编码: 226000

电 话: 0513-68252917

传 真: 0513-68252966

电子邮件: jshajcjs@163.com

第2页共6页

## 检测报告

| 委托单位 |            | 江方   | 5隆昌化工有限2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 公司              |                           |
|------|------------|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|---------------------------|
| 通讯地址 |            | 如皋   | 市长江镇钱江路                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1号              |                           |
| 联系人  | 崔          | 总    | 联系电话                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 15706           | 271352                    |
| 采样日期 | 2025.04.17 | 接样日期 | 2025.04.17、<br>2025.04.18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 分析日期            | 2025.04.17~<br>2025.05.07 |
|      |            |      | W. Committee of the com |                 |                           |
| 检测目的 | 受江苏隆管理提供依据 |      | 司委托,对其地                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <b>决地下水进</b> 行标 | <u>金测,为其</u> 环均           |
| 检测目的 |            | 0    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 央地下水进行机         | 金测,为其环 <sup>5</sup>       |

编制: 1714克图

复核:

审核: 二宗 為

签发: 人名

签发日期とび年も月1月日

第3页共6页

(2025) 恒安(水)字第(478)号

表 1 地下水检测结果

| # 11 74 94 |            | 监测点位  | GW1                             | 6M9                                   | GW11                            | GW12                                                                       | GW3                             |
|------------|------------|-------|---------------------------------|---------------------------------------|---------------------------------|----------------------------------------------------------------------------|---------------------------------|
| 米梓口期       | 2025.04.17 | 经纬度   | N: 32.090521°<br>E: 120.518662° | N: 32.089639°<br>E: 120.518448°       | N: 32.089688°<br>E: 120.519993° | N: 32.090715°<br>E: 120.519728°                                            | N: 32.089970°<br>E: 120.518388° |
|            | 样品编号       |       | 2500448D1-001                   | 2500448D9-001                         | 2500448D11-001                  | 2500448D12-001                                                             | 2500448D3-001<br>2500448D3-002  |
| 極風         | 样品状态       |       | 无色透明                            | 无色透明                                  | 无色透明                            | 无色透明                                                                       | 无色透明                            |
| 岩 果        | 氣甲烷        | mg/L  | 1.3×10 <sup>-4</sup> L          | 1.3×10 <sup>-4</sup> L                | 1.3×10 <sup>-4</sup> L          | 1.3×10 <sup>-4</sup> L                                                     | 1.3×10-4L                       |
|            | 3,3-二氣联苯胺* | mg/L  | 1.0×10-2L                       | 1.0×10 <sup>-2</sup> L                | 1.0×10 <sup>-2</sup> L          | 1.0×10 <sup>-2</sup> L                                                     | 1.0×10 <sup>-2</sup> L          |
|            |            |       |                                 | 以下空白                                  |                                 |                                                                            |                                 |
|            |            |       |                                 |                                       |                                 |                                                                            |                                 |
|            |            |       |                                 |                                       |                                 |                                                                            |                                 |
|            |            |       |                                 |                                       |                                 |                                                                            |                                 |
|            | 加"*"的检测因子  | 分包给江苏 | 、格林勒斯检测科技、                      | 有限公司,该部分检测<br>GE2504172801411.        | 会测结果引用江苏格<br>11.                | 加**"的检测因子分包给江苏格林勒斯检测科技有限公司,该部分检测结果引用江苏格林勒斯检测科技有限公司报告编号<br>GE25AA172801A11. | <b>县公司报告编号</b>                  |
| 备注         |            |       | 2500448D3-0                     | 2500448D3-002 是 2500448D3-001 的现场平行样; | 01的现场平行样;                       |                                                                            |                                 |
|            |            |       | 未检出以                            | 未检出以"检出限+L"表示,检出限见表 2。                | 检出限见表 2。                        |                                                                            |                                 |

第4页共6页



(2025) 恒安(水)字第(478)号

|      |            |        | 表 1                                                        | 表1(续) 地下                        | 地下水检测结果                                                                                                                                                                |                                 |                                 |                                 |
|------|------------|--------|------------------------------------------------------------|---------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|---------------------------------|---------------------------------|
|      |            | 监测点位   | GW4                                                        | GW5                             | 9MD                                                                                                                                                                    | GW7                             | GW8                             | GW2                             |
| 采样日期 | 2025.04.17 | 经纬度    | N: 32.089590°<br>E: 120.518932°                            | N: 32.089360°<br>E: 120.518862° | 32.089590° N; 32.089360° N; 32.089262° N; 32.090161° N; 32.089089° N; 32.090495° 120.518932° E; 120.518852° E; 120.519514° E; 120.519914° E; 120.519857° E; 120.51953° | N: 32.090161°<br>E: 120.519914° | N: 32.089089°<br>E: 120.519857° | N: 32.090495°<br>E: 120.519523° |
|      | 样品编号       | 11     | 2500448D4-001                                              | 2500448D5-001                   | 2500448D4-001 2500448D5-001 2500448D6-001 2500448D7-001 2500448D8-001                                                                                                  | 2500448D7-001                   | 2500448D8-001                   | 2500448D2-001<br>2500448D2-002  |
| 忽 溪  | 样品状态       | 126    | 无色透明                                                       | 无色透明                            | 无色透明                                                                                                                                                                   | 无色透明                            | 无色透明                            | 无色透明                            |
| 结 果  | 氣甲烷        | mg/L   | 1.3×10 <sup>-4</sup> L                                     | 1.3×10 <sup>-4</sup> L          | 1.3×10 <sup>-4</sup> L                                                                                                                                                 | 1.3×10 <sup>-4</sup> L          | 1.3×10 <sup>-4</sup> L          | 1.3×10 <sup>-4</sup> L          |
|      | 3,3-二氯联苯胺* | mg/L   | 1.0×10-2L                                                  | 1.0×10-2L                       | 1.0×10 <sup>-2</sup> L                                                                                                                                                 | 1.0×10 <sup>-2</sup> L          | 1.0×10 <sup>-2</sup> L          | 1.0×10 <sup>-2</sup> L          |
|      |            |        |                                                            | 以下空白                            |                                                                                                                                                                        |                                 |                                 |                                 |
|      |            |        |                                                            |                                 |                                                                                                                                                                        |                                 |                                 |                                 |
|      |            |        |                                                            |                                 |                                                                                                                                                                        |                                 |                                 |                                 |
|      |            |        |                                                            |                                 |                                                                                                                                                                        |                                 |                                 |                                 |
|      | 加"*"的检测因   | 1子分包给江 | 加**"的检测因子分包给江苏格林勒斯检测科技有限公司,该部分检测结果引用江苏格林勒斯检测科技有限公司报告编号<br> | 科技有限公司, 1                       | 良公司,该部分检测结果引                                                                                                                                                           | 用江苏格林勒斯                         | 检测科技有限公司                        | 司报告编号                           |
| 世 洪  |            |        | 2500448                                                    | 3D2-002 是 25004                 | 2500448D2-002 是 2500448D2-001 的现场平行样;<br>+ 达山村(4)(4)(4)(4)(4)(4)(4)(4)(4)(4)(4)(4)(4)(                                                                                 | 平行样;                            |                                 |                                 |
|      |            |        | 木色                                                         | [出以,恒出版+1]                      | 木位出以"位出限+1"表示, 位出限光表 2。                                                                                                                                                | K 7°                            |                                 |                                 |



## 表 2 检测依据及相关信息

| 类别  | 检测项目       | 检测依据                                      | 检出限                       | 检测仪器           | 仪器型号              | 仪器编号        |
|-----|------------|-------------------------------------------|---------------------------|----------------|-------------------|-------------|
|     | -          | 《地下水环境监测技术规范》<br>HJ 164-2020              | -                         | -              | -                 | -           |
| 地下水 | 氯甲烷        | 《水质 挥发性有机物的测定 吹扫捕集/气相色谱-质谱法》HJ 639-2012   | -                         | 气相质谱<br>联用仪    | GCMS-QP<br>2010SE | HAYQ-087-01 |
|     | 3,3′-二氯联苯胺 | 《半挥发性有机物的测定 气相色谱/<br>质谱法》GLLS-3-H002-2018 | 1.0×10 <sup>-2</sup> mg/L | 气相色谱-质<br>谱联用仪 | Agilent<br>6890N  | GLLS-JC-184 |

\*\*\*报告结束\*\*\*

第6页共6页

# 测 报 告 **TEST REPORT**

(2025) 恒安(水)字第(502)号



检测类别: 委托检测 项目名称:

委托单位: 江苏隆昌化工有限公司

地下水检测

江苏恒安检测技术有限公司

JiangSu HengAn Detection Technology Co., Ltd.

CO二五年六月

第1页共5页

#### 声明

- 一、用户对本报告若有异议,可在收到本报告后7日内,向本公司提出书 面申诉,超过申诉期限,概不受理。
- 二、本报告无编制、复核、审核及授权签字人签名无效,未加盖检验检测 专用章、骑缝章无效。
- 三、未经许可,不得复制本报告;任何对本报告的涂改、伪造、变更及不 当使用均无效,其责任人将承担相关法律及经济责任,本公司保留对上述行为 追究法律责任的权利。
- 四、本报告检测结果仅对被测地点、对象及当时情况有效;由其他单位或 个人采集送检的样品,本公司仅对送检样品的检测结果负责,委托方对送检样 品及其相关信息的真实性负责。

五、不包含 CMA 资质认定标志的报告仅用于科研、教学或企业内部质量控制活动使用,检测数据和结果仅供参考用,不具有社会证明作用。

六、本公司对本报告的检测数据保守秘密。

七、未经本公司书面同意,该检验报告不得用于商业性宣传。

地 址: 南通市崇川区观音山街道胜利路 168 号 2 幢 4 层 5 层

邮政编码: 226000

电 话: 0513-68252917

传 真: 0513-68252966

电子邮件: jshajcjs@163.com

第2页共5页

## 检测报告

| 委托单位 |                  | 江。       | 苏隆昌化工有限。                  | 公司        |                           |
|------|------------------|----------|---------------------------|-----------|---------------------------|
| 通讯地址 |                  | 如皋       | 市长江镇钱江路                   | § 1 号     |                           |
| 联系人  | 崔                | 总        | 联系电话                      | 15706     | 271352                    |
| 采样日期 | 2025.04.17       | 接样日期     | 2025.04.17、<br>2025.04.18 | 分析日期      | 2025.04.17~<br>2025.05.16 |
| 检测目的 | 受江苏隆管理提供依据       |          | 司委托,对其地均                  | 央地下水进行核   | <b>à</b> 测,为其环境           |
| 检测内容 | 地下水: 3,4-二<br>苯胺 | 二氯硝基苯、2. | 4-二氯苯乙酮、                  | 2,5-二氯硝基苯 | E、邻硝基对氯                   |
| 检测依据 | -                |          |                           |           |                           |

章 型外

编制:

复核:

签发: 4

签发日期 2014年 0 月 1 日

第3页共5页

(2025) 恒安(水)字第(502)号

JSHA-TR-32-01(2023)

表 1 地下水检测结果

N: 32.089970° E: 120.518388° 2500448D3-001 2500448D3-002 加"\*"的检测因子分包给江苏格林勒斯检测科技有限公司,该部分检测结果引用江苏格林勒斯检测科技有限公司报告编号 定性未检出 定性未检出 定性未检出 定性未检出 无色透明 GW3 N: 32.090715° E: 120.519728° 2500448D12-001 定性未检出 定性未检出 定性未检出 定性未检出 无色透明 GW12 N: 32.089688° E: 120.519993° 2500448D11-001 2500448D3-002 是 2500448D3-001 的现场平行样。 定性未检出 定性未检出 定性未检出 定性未检出 无色透明 GW11 GE2504172801A1(定性); N: 32.089639° E: 120.518448° 2500448D9-001 定性未检出 定性未检出 定性未检出 定性未检出 无色透明 GW9 N: 32.090521° E: 120.518662° 2500448D1-001 定性未检出 定性未检出 定性未检出 定性未检出 无色透明 GWI 监测点位 经纬度 1 样品编号 样品状态 邻硝基对氯苯胺\* 3,4-二氯硝基苯\* 2,4-二氯苯乙酮\* 2,5-二氯硝基苯\* 2025.04.17 采样日期 注 检测结果 每

第4页共5页



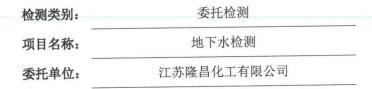
(2025) 恒安(水)字第(502)号

JSHA-TR-32-01(2023)

表1(续) 地下水检测结果

| 本になる。 | F1 10 3000 | 监测点位  | GW4                                                                                                                    | GW5                                       | 9MD                                                                                     | CW7                                   | 8WD                                   | GW2                             |
|-------|------------|-------|------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|-----------------------------------------------------------------------------------------|---------------------------------------|---------------------------------------|---------------------------------|
| 本作口湖  | 2023.04.17 | 经纬度   | N: 32.089590° N:<br>E: 120.518932° E:                                                                                  | N: 32.089360° N:<br>E: 120.518862° E:     | N: 32.089262° N:<br>E: 120.519514° E:                                                   | N: 32.090161° N:<br>E: 120.519914° E: | N: 32.089089° N:<br>E: 120.519857° E: | N: 32.090495°<br>E: 120.519523° |
|       | 样品编号       |       | 2500448D4-001                                                                                                          | 2500448D5-001                             | 2500448D4-001 2500448D5-001 2500448D6-001                                               | 2500448D7-001 2500448D8-001           | 2500448D8-001                         | 2500448D2-001<br>2500448D2-002  |
|       | 样品状态       |       | 无色透明                                                                                                                   | 无色透明                                      | 无色透明                                                                                    | 无色透明                                  | 无色透明                                  | 无色透明                            |
| 極影    | 3,4-二氯硝基苯* |       | 定性未检出                                                                                                                  | 定性未检出                                     | 定性未检出                                                                                   | 定性未检出                                 | 定性未检出                                 | 定性未检出                           |
| 岩 果   | 2,4-二氯苯乙酮* | 4     | 定性未检出                                                                                                                  | 定性未检出                                     | 定性未检出                                                                                   | 定性未检出                                 | 定性未检出                                 | 定性未检出                           |
|       | 2,5-二氯硝基苯* | 1     | 定性未检出                                                                                                                  | 定性未检出                                     | 定性未检出                                                                                   | 定性未检出                                 | 定性未检出                                 | 定性未检出                           |
|       | 邻硝基对氯苯胺*   | 1     | 定性未检出                                                                                                                  | 定性未检出                                     | 定性未检出                                                                                   | 定性未检出                                 | 定性未检出                                 | 定性未检出                           |
| 各     | 加"*"的检测因   | 子分包给江 | 加"*"的检测因子分包给江苏格林勒斯检测科技有限公司,该部分检测结果引用江苏格林勒斯检测科技有限公司报告编号<br>GE2S04172801A1(定性);<br>2500448D2-002 是 2500448D2-001 的现场平行样。 | 科技有限公司,;<br>GE25041728<br>3D2-002 是 25004 | J斯检测科技有限公司,该部分检测结果引用江苏;<br>GE2504172801A1(定性);<br>2500448D2-002 是 2500448D2-001 的现场平行样。 | 用江苏格林勒斯平行样。                           | 检测科技有限公司                              | 司报告编号                           |

\*\*\*报告结束\*\*\*






## 检测报告 TEST REPORT

(2025) 恒安(水)字第(991)号





江苏恒安检测技术有限公司
JiangSu Heng An Detection Technology Co., Ltd.

第 1 页 共 18 页

#### 声明

- 一、用户对本报告若有异议,可在收到本报告后7日内,向本公司提出书 面申诉,超过申诉期限,概不受理。
- 二、本报告无编制、复核、审核及授权签字人签名无效,未加盖检验检测 专用章、骑缝章无效。
- 三、未经许可,不得复制本报告;任何对本报告的涂改、伪造、变更及不 当使用均无效,其责任人将承担相关法律及经济责任,本公司保留对上述行为 追究法律责任的权利。

四、本报告检测结果仅对被测地点、对象及当时情况有效;由其他单位或 个人采集送检的样品,本公司仅对送检样品的检测结果负责,委托方对送检样 品及其相关信息的真实性负责。

五、不包含 CMA 资质认定标志的报告仅用于科研、教学或企业内部质量控制活动使用,检测数据和结果仅供参考用,不具有社会证明作用。

六、本公司对本报告的检测数据保守秘密。

七、未经本公司书面同意,该检验报告不得用于商业性宣传。

地 址:南通市崇川区观音山街道胜利路 168 号 2 幢 4 层 5 层

邮政编码: 226000

电 话: 0513-68252917

传 真: 0513-68252966

电子邮件: jshajcjs@163.com

第 2 页 共 18 页

### 检测报告

| 委托单位 |                                       | 江。                                                                            | 苏隆昌化工有限?                                                             | 公司                                       |                                        |
|------|---------------------------------------|-------------------------------------------------------------------------------|----------------------------------------------------------------------|------------------------------------------|----------------------------------------|
| 通讯地址 |                                       | 如皋                                                                            | 市长江镇钱江路                                                              | 81号                                      |                                        |
| 联系人  | 崔                                     | 总                                                                             | 联系电话                                                                 | 15706                                    | 271352                                 |
| 采样日期 | 2025.07.21、<br>2025.07.24             | 接样日期                                                                          | 2025.07.21、<br>2025.07.22、<br>2025.07.24、<br>2025.07.25              | 分析日期                                     | 2025.07.21°<br>2025.08.12              |
| 检测目的 | 受江苏隆 管理提供依据                           |                                                                               | 司委托,对其地块                                                             | 块地下水进行核                                  | 金测,为其环 <sup>均</sup>                    |
| 检测内容 | 硬度)、溶解的<br>阴离子表面活<br>酸盐氮、总氰<br>可萃取性石油 | 性总固体、硫酯性剂、高锰酸;<br>性剂、高锰酸;<br>化物、氟化物、<br>烃(C <sub>10</sub> -C <sub>40</sub> )、 | 度、肉眼可见物、<br>袋盐、氯化物、皂<br>盐指数、氨氮、<br>碘化物、汞、<br>种大性有机物。<br>一三氯苯、1,3,5-3 | 失、锰、铜、锌<br>硫化物、钠、型<br>申、硒、镉、六<br>、多环芳烃、表 | 、铝、挥发酚<br>E 硝酸盐氮、石<br>价铬、铅、镍<br>苯胺、硝基苯 |
| 检测依据 | 见表 2                                  |                                                                               |                                                                      |                                          | -                                      |

编制: 加坡。

复核:

签发: // 五分



第 3 页 共 18 页





(2025) 恒安(水)字第(991)号

检出限 1 ı 1 1 1 E: 120.518899° N: 32.089639° 2500899D9-001 浅黄透明 0.0003L 14.8 0.003L 0.270 7.2 0.05L 2.0 光 光 51 148 388 22 30 2 N: 32.089206° E: 120.519451° 2500899D6-001 浅黄透明 0.0003L 0.003L 14.8 0.05L 7.7 1.42 光 496 1.9 出 48 2 272 10 57 E: 120.518388° N: 32.089970° 2500899D3-001 浅黄透明 0.0003L 7.4 14.8 0.372 0.003L 0.05L 光 光 42 168 397 1.5 2 23 31 表 1 地下水检测结果 N: 32.090495° E: 120.519523° 2500899D2-001 2500899D2-002 无色透明 GW2 0.0003L 0.003L 14.8 0.110 9.7 0.05L 光 光 35 158 385 2.0 5L 12 30 N: 32.090521° E: 120.518662° 2500899D1-001 浅黄透明 GW1 14.8 0.0003L 0.003L 7.1 0.05L 0.518 180 光 光 47 10 367 14 32 1.4 监测点位 经纬度 无量纲 NTU mg/L mg/L mg/L mg/L mg/L mg/L mg/L 20 mg/L mg/L 1 闽 样品编号 样品状态 阴离子表面活性剂 溶解性总固体 钙、镁总量 (总硬度) 高锰酸盐指数 肉眼可见物 2025.07.21 臭和味 pH 值 硫酸盐 氣化物 挥发酚 水温 浊度 色度 硫化物 采样 日期 強測話果

第 4 页 共 18 页

" " "

2

| 亚硝酸盐氮 | mg/L | 0.078                  | 0.015                  | 0.020                  | 0.024                  | 0.020                 | ı                    |
|-------|------|------------------------|------------------------|------------------------|------------------------|-----------------------|----------------------|
| 硝酸盐氮  | mg/L | 0.250                  | 0.654                  | 0.488                  | 0.236                  | 0.362                 |                      |
| 总氰化物  | mg/L | 0.004L                 | 0.004L                 | 0.004L                 | 0.004L                 | 0.004L                | . 1                  |
| 氟化物   | mg/L | 0.50                   | 0.35                   | 0.30                   | 0.28                   | 0.20                  |                      |
| 碘化物   | mg/L | 0.006L                 | 1900'0                 | 1900·0                 | 0.006L                 | 1900'0                |                      |
| 六价铬   | mg/L | 0.004L                 | 0.004L                 | 0.004L                 | 0.004L                 | 0.004L                | ,                    |
| 铁     | mg/L | 0.48                   | 90.0                   | 1.42                   | 0.62                   | 0.94                  | i                    |
| 红     | mg/L | 0.124                  | 0.004L                 | 0.013                  | 0.237                  | 0.007                 | 1                    |
| 梓     | mg/L | 0.243                  | 8.16×10 <sup>-2</sup>  | 8.48×10 <sup>-2</sup>  | 2.17×10 <sup>-2</sup>  | 5.74×10 <sup>-2</sup> | ,                    |
| 出     | mg/L | 0.49                   | 0.07L                  | 0.48                   | 0.48                   | 0.47                  | 1                    |
| 钠     | mg/L | 13.2                   | 13.2                   | 12.8                   | 22.0                   | 13.0                  | 1                    |
| 强     | mg/L | 4×10-4L                | 4×10-4L                | 4×10-4L                | 4×10 <sup>-4</sup> L   | 4×10-4L               |                      |
| 鴾     | mg/L | 3.35×10 <sup>-3</sup>  | 1.66×10 <sup>-3</sup>  | 2.33×10 <sup>-3</sup>  | 2.56×10 <sup>-3</sup>  | 1.97×10 <sup>-3</sup> | 1                    |
| <br>也 | mg/L | 5.2×10 <sup>-3</sup>   | 1.6×10 <sup>-3</sup>   | 2.5×10 <sup>-3</sup>   | 6.6×10 <sup>-3</sup>   | 1.8×10-3              | ,                    |
| 梅     | mg/L | 9×10-5                 | 5×10-5L                | 8×10-5                 | 1.38×10 <sup>-3</sup>  | 5×10-5L               |                      |
| 侚     | mg/L | 5.93×10 <sup>-3</sup>  | 1.48×10 <sup>-3</sup>  | 3.16×10 <sup>-3</sup>  | 4.59×10 <sup>-3</sup>  | 3.29×10 <sup>-3</sup> |                      |
| 铅     | mg/L | 1.2×10 <sup>-2</sup>   | 1×10-3                 | 3×10-3                 | 1×10-3L                | 1×10-3L               | ,                    |
| 来     | mg/L | 4×10-5L                | 4×10-5L                | 4×10-5L                | 4×10-5L                | 4×10-5L               |                      |
| 四氯化碳  | mg/L | 1.5×10 <sup>-3</sup> L | 1.5×10 <sup>-3</sup> L | 1.5×10 <sup>-3</sup> L | 1.5×10 <sup>-3</sup> L | 1.5×10-3L             | 1.5×10-3             |
| 三氯甲烷  | mg/L | 4.0×10 <sup>-3</sup>   | 1.4×10 <sup>-3</sup>   | 7.3×10 <sup>-3</sup>   | 1.4×10 <sup>-3</sup> L | 3.3×10 <sup>-3</sup>  | 1,4×10 <sup>-3</sup> |

| 1 2×10-3               | 1.4×10-3               | 1 3010.3               | 1.2×10.3               | 1.2×10°                | 1×10-3  | 1 2×10-3               | 1.5010-3               | 1.3×10                 | 1.1×10°   | 1.2×10°    | 1.4×10-3   | 1.5×10 <sup>-3</sup>   | 1.2×10-3               | 1 2010.3               | 1.2×10°                | 1.3×10°                | 1.4×10-3 | 1×10-5               | 8×10-4               | 8×10+                 |
|------------------------|------------------------|------------------------|------------------------|------------------------|---------|------------------------|------------------------|------------------------|-----------|------------|------------|------------------------|------------------------|------------------------|------------------------|------------------------|----------|----------------------|----------------------|-----------------------|
| 1.2×10-3T              | 1 4×10-3r              | 1 2×10-3r              | 1.2×10-3r              | 1.2×10 L               | 1×10-31 | 1 2×10-3r              | 1 5×10-3r              | 1.1×10-3r              | 1.1×10-L  | 7.01\7:1   | 1.4×10'-2L | $1.5 \times 10^{-3}$ L | 1.2×10-3L              | 1 2×10-3r              | 1.2×10 L               | 1.0×10-3               | 1.4×10°L | Lylor                | 6.7/×10-2            | 1.38×10 -<br>8×10-4r  |
| 1.2×10-3L              | 1.4×10-3L              | 1.2×10 <sup>-3</sup> L | 1.2×10-3L              | 1.1×10-3L              | 1×10-3L | 1.2×10-3L              | 1.5×10-3L              | 1.1×10-31              | 1 2×10-3r | 1 4~10-31  | 1.4.10.F   | 1.5×10 <sup>-3</sup> L | 1.2×10-3L              | 1.2×10-3L              | 1 5×10-3               | 6.65×10-2              | 191.0    | 1 6×10-3             | 1.0×10-2             | 8×10 <sup>-4</sup> I. |
| 1.2×10 <sup>-3</sup> L | 1.4×10 <sup>-3</sup> L | 1.2×10 <sup>-3</sup> L | 1.2×10-3L              | 1.1×10 <sup>-3</sup> L | 1×10-3L | 1.2×10-3L              | 1.5×10 <sup>-3</sup> L | 1.1×10³L               | 1.2×10-3L | 1 4×10-31  |            | 1.5×10 <sup>-3</sup> L | 1.2×10 <sup>-3</sup> L | 1.2×10-3L              | 1.5×10-3L              | 1.4×10-3L              | 1×10-3L  | 8 96×10-2            | 8×10 <sup>-4</sup> L | 8×10 <sup>4</sup> L   |
| 1.2×10 <sup>-3</sup> L | 1.4×10 <sup>-3</sup> L | 1.2×10-3L              | 1.2×10 <sup>-3</sup> L | 1.1×10 <sup>-3</sup> L | 1×10-3L | 1.2×10-3L              | 1.5×10 <sup>-3</sup> L | 1.1×10 <sup>-3</sup> L | 1.2×10-3L | 1.4×10-3L  | -64        | 1.5×10-3L              | 1.2×10 <sup>-3</sup> L | 1.2×10-3L              | 1.5×10 <sup>-3</sup> L | 1.4×10 <sup>-3</sup> L | 1×10-3L  | 8×10 <sup>4</sup> L  | 8×10 <sup>-4</sup> L | 8×10 <sup>-4</sup> L  |
| 1.2×10-3L              | 1.4×10 <sup>-3</sup> L | 1.2×10-3L              | 1.2×10-3L              | 1.1×10 <sup>-3</sup> L | 1×10-3L | 1.2×10 <sup>-3</sup> L | 1.5×10 <sup>-3</sup> L | 1.1×10-3L              | 1.2×10-3L | 1.4×10-3L  | 1 5-10-31  | 1.3×10°L               | 1.2×10-3L              | 1.2×10 <sup>-3</sup> L | 1.5×10 <sup>-3</sup> L | 1.4×10 <sup>-3</sup> L | 1×10-3L  | 8×10 <sup>-4</sup> L | 8×10 <sup>-4</sup> L | 8×10 <sup>4</sup> L   |
| mg/L                   | mg/L                   | mg/L                   | mg/L                   | mg/L                   | mg/L    | mg/L                   | mg/L                   | mg/L                   | mg/L      | mg/L       | I/am       | T/SIII                 | mg/L                   | mg/L                   | mg/L                   | mg/L                   | mg/L     | mg/L                 | mg/L                 | mg/L                  |
| 1,1-二氯乙烷               | 1,2-二氯乙烷               | 1,1-二氯乙烯               | 顺-1,2-二氯乙烯             | 反-1,2-二氯乙烯             | 二氯甲烷    | 1,2-二氯丙烷               | 1,1,1,2-四氯乙烷           | 1,1,2,2-四氯乙烷           | 四氯乙烯      | 1,1,1-三氯乙烷 | 112-二個7.位  | 76111                  | 三氟乙烯                   | 1,2,3-三氯丙烷             | 氯乙烯                    | 茶                      | 氣苯       | 1,2-二氮苯              | 1,4-二氯苯              | 乙苯                    |
|                        |                        |                        |                        |                        |         |                        |                        | 4                      | 2 戻       | 出          | K          |                        |                        |                        |                        |                        |          |                      |                      |                       |

144

(2025) 恒安(水)字第(991)号

| (日本)         (日本)(1)         (日本)(1) <t< th=""><th>中本         mgL         14×10<sup>3</sup>L         11×10<sup>3</sup>L         11×10<sup>3</sup>L</th><th></th><th>\$ 1 t</th><th>mg/L</th><th>T+01×9</th><th>7+01×9</th><th>6×10<sup>-4</sup>L</th><th>T+01×9</th><th>0×10-4L</th><th>6×10-4</th></t<>   | 中本         mgL         14×10 <sup>3</sup> L         11×10 <sup>3</sup> L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        | \$ 1 t                                  | mg/L  | T+01×9                 | 7+01×9                 | 6×10 <sup>-4</sup> L   | T+01×9                 | 0×10-4L            | 6×10-4             |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|-----------------------------------------|-------|------------------------|------------------------|------------------------|------------------------|--------------------|--------------------|
| 日本・村二 日本         同じし         2.2×10 <sup>3</sup> L         4×10 <sup>3</sup> L         1.1×10 <sup>3</sup> L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 同二甲条   両記                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |        | <b>米</b>                                | mg/L  | 1.4×10 <sup>-3</sup> L | 1.4×10 <sup>-3</sup> L | 1.4×10 <sup>-3</sup> L | 1.4×10-3L              | 1 4×10-3r          | 14.10              |
| 総工申業         mgC         1.4×10³L         1.4×10³L         1.4×10³L         1.4×10³L         1.4×10³L         1.4×10³L         4×10°L         1×10°L         1×10°L <t< td=""><td>前差素         mgL         1.4×10<sup>3</sup>L         1.1×10<sup>3</sup>L         1.1×10<sup>3</sup>L</td><td>H</td><td>:甲苯+对二甲苯</td><td>mg/L</td><td>2.2×10<sup>-3</sup>L</td><td>2.2×10<sup>-3</sup>L</td><td>2.2×10<sup>-3</sup>L</td><td>2.2×10³I</td><td>7.3×10-3r</td><td>1.4×10</td></t<> | 前差素         mgL         1.4×10 <sup>3</sup> L         1.1×10 <sup>3</sup> L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | H      | :甲苯+对二甲苯                                | mg/L  | 2.2×10 <sup>-3</sup> L | 2.2×10 <sup>-3</sup> L | 2.2×10 <sup>-3</sup> L | 2.2×10³I               | 7.3×10-3r          | 1.4×10             |
| 商基本         mg/L         4×10 <sup>3</sup> L         4×10 <sup>3</sup> L         4×10 <sup>3</sup> L         1.4×10 <sup>3</sup> L         1.4×10 <sup>3</sup> L         1.4×10 <sup>3</sup> L         1.4×10 <sup>3</sup> L         4×10 <sup>3</sup> L         1.1×10 <sup>3</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 海藤本         mg/L         4×10 <sup>2</sup> L         4×10 <sup>2</sup> L         4×10 <sup>2</sup> L         4×10 <sup>2</sup> L         1,4×10 <sup>2</sup> L         1,4×10 <sup>2</sup> L         1,4×10 <sup>2</sup> L         1,4×10 <sup>2</sup> L         4×10 <sup>2</sup> L         1,1×10 <sup>2</sup> L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |        | 邻二甲苯                                    | mg/L  | 1.4×10 <sup>-3</sup> L | 1.4×10-3L              | 1 4×10-31              | 1 4~10-31              | T-710-7            | 7.2×10-            |
| 本股         mg/L         5.7×10 <sup>2</sup> L         5.7×10 <sup>2</sup> L         4×10 <sup>2</sup> L         4×10 <sup>2</sup> L         4×10 <sup>2</sup> L           2.病粉         mg/L         1.1×10 <sup>2</sup> L         1.1×10 <sup>2</sup> L         1.1×10 <sup>2</sup> L         1.1×10 <sup>2</sup> L         5.7×10 <sup>2</sup> L         5.7×10 <sup>2</sup> L           5.月間         mg/L         1.1×10 <sup>2</sup> L           7月月間         mg/L         4×10 <sup>2</sup> L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 未版         mgL         5.7×10 <sup>3</sup> L         5.7×10 <sup>3</sup> L         5.7×10 <sup>3</sup> L         4×10 <sup>3</sup> L         4×10 <sup>3</sup> L         5.7×10 <sup>3</sup> L         1.1×10 <sup>3</sup> L         4×10 <sup>6</sup> L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |        | 硝基苯                                     | mg/L  | 4×10-5L                | 4×10-5r                | 4×10.5r                | J-01×4:1               | 1.4×10-3L          | 1.4×10-3           |
| 2.類的         mg/L         1.1×10 <sup>3</sup> L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | - 5.7×10°L         5.7×10°L         5.7×10°L         5.7×10°L           ***********************************                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |        | 苯胺                                      | mø/L  | \$ 7×10-5r             | 2 02.10.51             | 1-10-F                 | 1c-01×4                | 4×10-5L            | 4×10-5             |
| 株園園         mgL         1.1×10 <sup>3</sup> L         1.1×10 <sup>4</sup> L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 本外間         mgL         1.×10³L         1.1×10³L         1.1×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |        | っ位形                                     | 10.   | 2.77.10 L              | J./x10-T               | 5.7×10°5L              | 5.7×10-5L              | 5.7×10-5L          | 5.7×10-5           |
| chilalis         mg/L         1.2×10°L         4×10°L         4×10°L </td <td>本月旬巻         mgL         1.2×10<sup>2</sup>L         1.2×10<sup>2</sup>L         1.2×10<sup>2</sup>L         1.2×10<sup>2</sup>L         1.2×10<sup>2</sup>L         1.2×10<sup>2</sup>L           本井白茂墓         mgL         4×10<sup>2</sup>L         4×10<sup>2</sup>L         4×10<sup>2</sup>L         4×10<sup>2</sup>L         4×10<sup>2</sup>L           本井白茂墓         mgL         4×10<sup>2</sup>L         4×10<sup>2</sup>L         4×10<sup>2</sup>L         4×10<sup>2</sup>L         4×10<sup>2</sup>L           二本井山薫 mgL         4×10<sup>2</sup>L         5×10<sup>2</sup>L         7×10<sup>2</sup>L         4×10<sup>2</sup>L         4×10<sup>2</sup>L         4×10<sup>2</sup>L           市井1,2,3-cd 茸         mgL         1,3×10<sup>2</sup>L         1,06×10<sup>2</sup>L         3×10<sup>2</sup>L         3×10<sup>2</sup>L         3×10<sup>2</sup>L         3×10<sup>2</sup>L         1,2×10<sup>2</sup>L         1,1×10<sup>2</sup>L         1,1×10<sup>2</sup>L&lt;</td> <td></td> <td>2-承(到</td> <td>mg/L</td> <td>1.1×10-3L</td> <td>1.1×10<sup>-3</sup>L</td> <td>1.1×10<sup>-3</sup>L</td> <td>1.1×10<sup>-3</sup>L</td> <td>1.1×10-31</td> <td>11710-3</td>                                                                                                            | 本月旬巻         mgL         1.2×10 <sup>2</sup> L           本井白茂墓         mgL         4×10 <sup>2</sup> L           本井白茂墓         mgL         4×10 <sup>2</sup> L           二本井山薫 mgL         4×10 <sup>2</sup> L         5×10 <sup>2</sup> L         7×10 <sup>2</sup> L         4×10 <sup>2</sup> L         4×10 <sup>2</sup> L         4×10 <sup>2</sup> L           市井1,2,3-cd 茸         mgL         1,3×10 <sup>2</sup> L         1,06×10 <sup>2</sup> L         3×10 <sup>2</sup> L         3×10 <sup>2</sup> L         3×10 <sup>2</sup> L         3×10 <sup>2</sup> L         1,2×10 <sup>2</sup> L         1,1×10 <sup>2</sup> L<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |        | 2-承(到                                   | mg/L  | 1.1×10-3L              | 1.1×10 <sup>-3</sup> L | 1.1×10 <sup>-3</sup> L | 1.1×10 <sup>-3</sup> L | 1.1×10-31          | 11710-3            |
| c 并                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 本并(a)花         mg/L         4×10 <sup>6</sup> L         3×10 <sup>6</sup> L         8×10 <sup>6</sup> L         11×10 <sup>6</sup> L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |        | 本开[a]愿                                  | mg/L  | 1.2×10-5L              | 1.2×10-5L              | 1.2×10-5L              | 1 2×10-5r              | 20000              | 01.1.1             |
| 并均茂蔥         mg/L         4×10°L         1×10°L         1×10°L <td>本手応接         両路         4×10°L         5×10°L         8×10°L         8×10°L         8×10°L         8×10°L         8×10°L         8×10°L         8×10°L         8×10°L         8×10°L         11×10°L<td></td><td>苯并[a]芘</td><td>mg/L</td><td>4×10-6L</td><td>4×10-61.</td><td>4×10-61</td><td>1.01×2.1</td><td>T-01×7:1</td><td>1.2×10-3</td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 本手応接         両路         4×10°L         5×10°L         8×10°L         8×10°L         8×10°L         8×10°L         8×10°L         8×10°L         8×10°L         8×10°L         8×10°L         11×10°L <td></td> <td>苯并[a]芘</td> <td>mg/L</td> <td>4×10-6L</td> <td>4×10-61.</td> <td>4×10-61</td> <td>1.01×2.1</td> <td>T-01×7:1</td> <td>1.2×10-3</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |        | 苯并[a]芘                                  | mg/L  | 4×10-6L                | 4×10-61.               | 4×10-61                | 1.01×2.1               | T-01×7:1           | 1.2×10-3           |
| 并风茂蔥         mg/L         4×10°L         5×10°L         5×10°L         5×10°L         5×10°L         5×10°L         5×10°L         5×10°L         1.2×10°L         1.2×10°L         1.2×10°L         1.2×10°L         1.2×10°L         1.2×10°L         3×10°L         3×10°L         3×10°L         3×10°L         8×10°L         8×10°L         8×10°L         8×10°L         8×10°L         8×10°L         8×10°L         8×10°L         8×10°L         1.1×10°L         1.1×10°L <t< td=""><td>本手に対応         本目の方面         イ×10<sup>4</sup>L         <th< td=""><td></td><td><b>苯并</b>[<b>b</b>]荧蒽</td><td>mg/L</td><td>4×10-6L</td><td>4×10-6r</td><td>7 6410.5</td><td>4×10°L</td><td>4×10-6L</td><td>4×10-6</td></th<></td></t<>   | 本手に対応         本目の方面         イ×10 <sup>4</sup> L         イ×10 <sup>4</sup> L <th< td=""><td></td><td><b>苯并</b>[<b>b</b>]荧蒽</td><td>mg/L</td><td>4×10-6L</td><td>4×10-6r</td><td>7 6410.5</td><td>4×10°L</td><td>4×10-6L</td><td>4×10-6</td></th<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |        | <b>苯并</b> [ <b>b</b> ]荧蒽                | mg/L  | 4×10-6L                | 4×10-6r                | 7 6410.5               | 4×10°L                 | 4×10-6L            | 4×10-6             |
| 菌         mg/L         5×10°L         7.8×10°L         4×10°L         4×10°L         4×10°L           chila         mg/L         1.33×10°L         1.06×10°L         3×10°L         3×10°L         5×10°L         5×10°L         5×10°L           xh         mg/L         1.33×10°L         1.06×10°L         3×10°L         3×10°L         3×10°L         3×10°L         3×10°L         1.2×10°L         3×10°L         3×10°L         3×10°L         1.2×10°L         3×10°L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 点         面         NS/LOST         5×10°L         4×10°L         5×10°L         8×10°L         1,1×10°L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |        | ¥并[k]荧蒽                                 | mg/L  | 4×10-6L                | 4×10-6r                | 7.0410°                | 4×10°L                 | 4×10-eL            | 4×10-6             |
| (H)(L)(L)(L)(L)(L)(L)(L)(L)(L)(L)(L)(L)(L)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 本土 (a,h)意         mg/L         3×10°L         5×10°L         5×10°L         5×10°L         5×10°L         5×10°L         5×10°L         5×10°L         3×10°L         1.2×10°L         3×10°L         <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |        | 和                                       | I/om  | 510 fr                 | 7 01.1                 | 4×10°L                 | 4×10°L                 | 4×10-eL            | 4×10-6             |
| KFH[a,h]器         mg/L         1.33×10 <sup>4</sup> 1.06×10 <sup>4</sup> 3×10 <sup>6</sup> L         3×10 <sup>6</sup> L         3×10 <sup>6</sup> L           素         mg/L         5×10 <sup>6</sup> L           素         mg/L         1.2×10 <sup>-3</sup> L         1.1×10 <sup>-3</sup> L         1.1×10 <sup>-4</sup> L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 山本州 県<br>山本川 県<br>山本川 県<br>山本川 は<br>山本  山                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |        | # 2% #                                  | mg/L  | 7°10°2                 | 79-01×5                | 7.8×10-5               | 2×10-6L                | 5×10-6L            | 5×10-6             |
| 表         mg/L         5×10°L         1.2×10°L         3×10°L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 市井[1,2,3-cd]花         mg/L         5×10 <sup>6</sup> L         1.2×10 <sup>5</sup> L         3×10 <sup>4</sup> L         <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |        | .本开[a,h]愿                               | mg/L  | 1.33×10-4              | 1.06×10 <sup>-4</sup>  | 3×10-6L                | 3×10-61                | 2×10-61            | 01.0               |
| 表         mg/L         1.2×10 <sup>3</sup> L         1.2×10 <sup>5</sup> L         1.2×10 <sup>5</sup> L         3×10 <sup>4</sup> L         1.2×10 <sup>5</sup> L         1.2×10 <sup>4</sup> L         1.1×10 <sup>4</sup> L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 申      | 件[1,2,3-cd]芘                            | mg/L  | 2×10-eL                | 5×10-6L                | 5×10-6r                | 19-01-2                | J~10°E             | 3×10-0             |
| 石油 (Clo-C <sub>4</sub> o) mg/L   0.03   0.01L   0.08   0.09   0.03   0.03   0.01L   0.08   0.09   0.03   0.03   0.03   0.03   0.03   0.03   0.03   0.03   0.03   0.03   0.03   0.03   0.03   0.03   0.03   0.03   0.03   0.03   0.03   0.03   0.03   0.03   0.03   0.03   0.03   0.03   0.03   0.03   0.03   0.03   0.03   0.03   0.03   0.03   0.03   0.03   0.03   0.03   0.03   0.03   0.03   0.03   0.03   0.03   0.03   0.03   0.03   0.03   0.03   0.03   0.03   0.03   0.03   0.03   0.03   0.03   0.03   0.03   0.03   0.03   0.03   0.03   0.03   0.03   0.03   0.03   0.03   0.03   0.03   0.03   0.03   0.03   0.03   0.03   0.03   0.03   0.03   0.03   0.03   0.03   0.03   0.03   0.03   0.03   0.03   0.03   0.03   0.03   0.03   0.03   0.03   0.03   0.03   0.03   0.03   0.03   0.03   0.03   0.03   0.03   0.03   0.03   0.03   0.03   0.03   0.03   0.03   0.03   0.03   0.03   0.03   0.03   0.03   0.03   0.03   0.03   0.03   0.03   0.03   0.03   0.03   0.03   0.03   0.03   0.03   0.03   0.03   0.03   0.03   0.03   0.03   0.03   0.03   0.03   0.03   0.03   0.03   0.03   0.03   0.03   0.03   0.03   0.03   0.03   0.03   0.03   0.03   0.03   0.03   0.03   0.03   0.03   0.03   0.03   0.03   0.03   0.03   0.03   0.03   0.03   0.03   0.03   0.03   0.03   0.03   0.03   0.03   0.03   0.03   0.03   0.03   0.03   0.03   0.03   0.03   0.03   0.03   0.03   0.03   0.03   0.03   0.03   0.03   0.03   0.03   0.03   0.03   0.03   0.03   0.03   0.03   0.03   0.03   0.03   0.03   0.03   0.03   0.03   0.03   0.03   0.03   0.03   0.03   0.03   0.03   0.03   0.03   0.03   0.03   0.03   0.03   0.03   0.03   0.03   0.03   0.03   0.03   0.03   0.03   0.03   0.03   0.03   0.03   0.03   0.03   0.03   0.03   0.03   0.03   0.03   0.03   0.03   0.03   0.03   0.03   0.03   0.03   0.03   0.03   0.03   0.03   0.03   0.03   0.03   0.03   0.03   0.03   0.03   0.03   0.03   0.03   0.03   0.03   0.03   0.03   0.03   0.03   0.03   0.03   0.03   0.03   0.03   0.03   0.03   0.03   0.03   0.03   0.03   0.03   0.03   0.03   0.03   0.03   0.03   0.03   0.03   0.03   0.03   0.03   0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 可萃取性         行油 (Clo-C4o)         mg/L         0.03         0.01L         0.08         0.09         0.03           3,3-二氯联苯胺*         mg/L         3×10 <sup>4</sup> L           三氯苯*         1,2,4—三氯苯*         mg/L         8×10 <sup>5</sup> L           1,3,5—三氯苯*         mg/L         1.1×10 <sup>4</sup> L         1.1×10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        | 茶                                       | mg/L  | 1.2×10-5L              | 1.2×10-5L              | 1 2×10-5r              | Tanixe.                | 3×10-oL            | 5×10-6             |
| 類様素胶*         mgL         3×10 <sup>4</sup> L           1,2,4-三氣本*         mgL         8×10 <sup>5</sup> L         8×10 <sup>5</sup> L         8×10 <sup>5</sup> L         8×10 <sup>5</sup> L           1,2,3-三氣本*         mgL         8×10 <sup>5</sup> L         8×10 <sup>5</sup> L         8×10 <sup>5</sup> L         8×10 <sup>5</sup> L           1,3,5-三氣本*         mgL         1.1×10 <sup>4</sup> L         1.1×10 <sup>4</sup> L         1.1×10 <sup>4</sup> L         1.1×10 <sup>4</sup> L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 3,3-二氣联苯胺*         mg/L         3×10 <sup>4</sup> L         3×10 <sup>4</sup> L         3×10 <sup>4</sup> L         0.09         0.03           三氣苯*         mg/L         8×10 <sup>5</sup> L           三氣苯*         mg/L         8×10 <sup>5</sup> L           1,3,5-三氣苯*         mg/L         1.1×10 <sup>4</sup> L           加***的检测因子外包给江苏格林勒斯检测科技和限公司,该部分检测结果引用江苏格林勒斯检测科技有限公司,该部分检测结果引用江苏格林勒斯检测科技有限公司,该部分检测结果引用江苏格林勒斯检测科技有限公司,该部分检测结果引用江苏格林勒斯检测科技有限公司,该部分检测结果引用江苏格林勒斯检测和技有限公司,该部分检测结果引用江苏格林勒斯检测和技有限公司,该部分检测结果引用江苏格林勒斯检测和技有限公司,该部分检测结果引用江苏格林勒斯检测和技有限公司,该部分检测结果引用江苏格林勒斯检测和技有限公司,该部分检测结果引用江苏格林勒斯检测和技有限公司,该部分检测结果引用江苏格林勒斯检测和技有限公司,该部分检测结果引用江苏格林勒斯检测和技有限公司,该部分检测结果引用江苏格林勒斯检测和技有限公司,该部分检测结果引用江苏格林勒斯检测和技术者限分司。         Maximus                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 可萃取    | 生石油 (C <sub>10</sub> -C <sub>40</sub> ) | mg/L  | 0.03                   | 0.011                  | 7-01-77                | Jc-01×7.1              | 1.2×10-5L          | 1.2×10-5           |
| 1,2,4-三氣术*         mgL         8×10 <sup>-5</sup> L         3×10 <sup>-4</sup> L         3×10 <sup>-4</sup> L         3×10 <sup>-4</sup> L           1,2,4-三氣术*         mgL         8×10 <sup>-5</sup> L           1,3,5-三氣术*         mgL         1.1×10 <sup>-4</sup> L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 無限         1.2,4三氟苯         mg/L         8×10 <sup>3</sup> L         3×10 <sup>4</sup> L         3×10 <sup>4</sup> L         3×10 <sup>4</sup> L           三氟苯         mg/L         8×10 <sup>5</sup> L           1,3,5-三氟苯         mg/L         1.1×10 <sup>4</sup> L           加***的检测因子分包给江苏格林勒斯检测科技有限公司,该部分检测结果引用江苏格林勒斯检测科技有限公司,该部分检测结果引用江苏格林勒斯检测科技有限公司,该部分检测结果引用江苏格林勒斯检测科技有限公司,该部分检测结果引用江苏格林勒斯检测科技有限公司,         CMAA 3.12.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 3,3-   | 二氯联苯胺*                                  | mø/L. | 3×10-4r                | 2.10.47                | 0.00                   | 0.09                   | 0.03               |                    |
| 1,5,3-三氟苯*         mg/L         8×10 <sup>3</sup> L           1,5,3-三氟苯*         mg/L         8×10 <sup>3</sup> L         8×10 <sup>3</sup> L         8×10 <sup>3</sup> L         8×10 <sup>3</sup> L           1,3,5-三氟苯*         mg/L         1.1×10 <sup>4</sup> L         1.1×10 <sup>4</sup> L         1.1×10 <sup>4</sup> L         1.1×10 <sup>4</sup> L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 編集         MgL         8×10 <sup>3</sup> L         1.1×10 <sup>4</sup> L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |        | 10.4 二位4*                               |       |                        | JAIN D                 | 3×10 <sup>4</sup> L    | 3×10-4L                | $3\times10^{-4}$ L | 3×10 <sup>-4</sup> |
| 1,2,3-三氟苯*     mg/L     8×10 <sup>3</sup> L       1,3,5-三氟苯*     mg/L     1.1×10 <sup>4</sup> L     1.1×10 <sup>4</sup> L     1.1×10 <sup>4</sup> L     1.1×10 <sup>4</sup> L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 二.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1      |                                         | mg/L  | 8×10-2L                | 3×10-2L                | 3×10-5L                | 8×10-5L                | 8×10-5r            | 8~10-5             |
| mg/L 1.1×10 <sup>4</sup> L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1,3,5-三氯苯* mg/L   1.1×10 <sup>4</sup> L   1.1×10 <sup>4</sup> L | 1. 劉本: | _                                       | mg/L  | 8×10-5L                | 8×10-5L                | 8×10-5L                | 8×10-2L                | 8×10-5r            | 0100               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2500899D2-002 是 250089D2-001 的现场平行样;<br>加"*"的检测因子分包给江苏格林勒斯检测科技有限公司,该部分检测结果引用江苏格林勒斯检测科技有限公司报告编号 GE2504172802 A. CMA iii.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |        | 1,3,5-三氯苯*                              | mg/L  | 1.1×10 <sup>-4</sup> L | 1.1×10 <sup>-4</sup> L | 1.1×10 <sup>-4</sup> L | 1.1×10-4r              | 11×10-4r           | onixo.             |

第7页共18页

表 1 (续) 地下水检测结果

(2025) 恒安(水)字第(991)号

检出限 1 1 į ı E: 120.519847° 2500899D12-001 N: 32.090653° 无色透明 GW12 0.0003L 0.003L 7.2 0.05L 1.46 0.9 出 光 644 787 31 5L 19 64 E: 120.519999° 2500899D11-001 N: 32.089705° 浅灰不透明 0.0003L 14.8 0.05L 0.003L 7.6 1.45 570 4.0 神 单 55 10 30 681 69 E: 120.502133° 2500899D10-001 N: 32.517776° 浅灰不透明 0.0003L 0.05L 0.003L 14.8 1.40 7.4 242 914 196 7.5 47 10 34 中 神 N: 32.088789° E: 120.519930° 2500899D8-001 无色透明 0.0003L GW8 14.8 0.05L 0.220 0.003L 7.7 H 378 1.1 光 36 5L161 24 30 N: 32.090100° E: 120.519908° 2500899D7-001 无色透明 0.0003L GW7 0.05L 0.003L 14.8 1.48 7.5 光 光 959 235 0.9 32 5L 25 监测点位 经纬度 无量纲 NTO mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L 00 度 1 1 样品状态 样品编号 阴离子表面活性剂 钙、镁总量 (总硬度) 高锰酸盐指数 溶解性总固体 肉眼可见物 2025.07.21 臭和味 氯化物 pH 值 硫酸盐 挥发酚 硫化物 水温 色度 浊度 氨氮 采样口期 检测结果

第8页共18页

JSHA-TR-32-01(2023)

(2025) 恒安(水)字第(991)号

|       | 亚硝酸盐氮 | mg/L | 0.013                 | 0.014                  | 0.013                  | 0.012                  | 0.012                 | ,                    |
|-------|-------|------|-----------------------|------------------------|------------------------|------------------------|-----------------------|----------------------|
|       | 硝酸盐氮  | mg/L | 0.411                 | 0.679                  | 0.278                  | 0.263                  | 0.184                 |                      |
|       | 总氰化物  | mg/L | 0.004L                | 0.004L                 | 0.004L                 | 0.004L                 | 0.004L                |                      |
|       | 氟化物   | mg/L | 0.21                  | 0.21                   | 0.20                   | 0.19                   | 0.18                  | ,                    |
|       | 碘化物   | mg/L | 0.006L                | 0.006L                 | T90000                 | 0.006L                 | 0.006L                | ,                    |
|       | 六价格   | mg/L | 0.004L                | 0.004L                 | 0.004L                 | 0.004L                 | 0.004L                |                      |
|       | 铁     | mg/L | 1.42                  | 0.14                   | 1.49                   | 0.46                   | 0.91                  | ,                    |
|       | 辑     | mg/L | 0.174                 | 0.004L                 | 0.531                  | 0.818                  | 0.982                 |                      |
|       | 转     | mg/L | 4.50×10 <sup>-3</sup> | 3.19×10 <sup>-2</sup>  | 2.22×10-3              | 5.72×10 <sup>-3</sup>  | 1.78×10 <sup>-3</sup> |                      |
| 図裏    | 明     | mg/L | 80.0                  | 0.17                   | 0.47                   | 0.48                   | 0.07L                 | 1                    |
| ## == | 钠     | mg/L | 155                   | 12.8                   | 175                    | 18.6                   | 54.3                  | 1                    |
| K     | 一     | mg/L | 4×10-4L               | 4×10-4L                | 4×10 <sup>-4</sup> L   | 4×10-4L                | 4×10-4L               |                      |
|       | 筷     | mg/L | 5.3×10 <sup>-4</sup>  | 5.2×10 <sup>-4</sup>   | 1.48×10 <sup>-3</sup>  | 1.42×10 <sup>-3</sup>  | 2.17×10 <sup>-3</sup> | ,                    |
|       | 世     | mg/L | 2.36×10 <sup>-2</sup> | 3.0×10 <sup>-3</sup>   | 1.90×10 <sup>-2</sup>  | 2.34×10 <sup>-2</sup>  | 2.86×10 <sup>-2</sup> |                      |
|       | 機     | mg/L | 5×10-5L               | 8×10-5                 | 5×10-5L                | 2×10-2L                | 5×10-5L               |                      |
|       | 侚     | mg/L | 8.1×10 <sup>-4</sup>  | 7.7×10-4               | 8.8×10 <sup>-4</sup>   | 1.67×10 <sup>-3</sup>  | 6.9×10 <sup>-4</sup>  | ,                    |
|       | 铅     | mg/L | 2×10-3                | 4×10-3                 | 3×10 <sup>-3</sup>     | 4×10-3                 | 1×10-3L               |                      |
|       | 来     | mg/L | 1,4×10 <sup>-4</sup>  | 4×10-5L                | 1.4×10 <sup>-4</sup>   | 4×10-5L                | 4×10-5L               |                      |
|       | 四氯化碳  | mg/L | 1.5×10-3L             | 1.5×10 <sup>-3</sup> L | 1.5×10 <sup>-3</sup> L | 1.5×10-3L              | 1.5×10-3L             | 1.5×10-3             |
|       | 三氯甲烷  | mg/L | 1.4×10-3L             | 2.7×10 <sup>-3</sup>   | 1.4×10 <sup>-3</sup> L | 1.4×10 <sup>-3</sup> L | 1.4×10-3L             | 1.4×10 <sup>-3</sup> |

第 9 页 共 18 页

148

第11页共18页

| 6×10 <sup>4</sup> L 6×10 <sup>4</sup> | 1.4×10-3L 1.4×10-3                             |                        | 2.2×10 <sup>-3</sup> L 2.2×10 <sup>-3</sup> | 1.4×10 <sup>-3</sup> L 1.4×10 <sup>-3</sup> | 4×10-5L 4×10-5 | 5.7×10-5L 5.7×10-5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                        | 1.1×10°L 1.1×10°3 | 1.2×10-5L 1.2×10-5 | 4×10-6L 4×10-6 | 4×10-6L 4×10-6 | 4×10-6L 4×10-6 | 5×10-6L 5×10-6 | 3×10-6r               |               | 5×10°L 5×10°6 | 1.2×10-5L 1.2×10-5 | 0.12                 | 3×10 <sup>-4</sup> L 3×10 <sup>-4</sup> | 8×10-5L 8×10-5  | 8×10-5L 8×10-5       | 1.1×10 <sup>-4</sup> L 1.1×10 <sup>-4</sup> |
|---------------------------------------|------------------------------------------------|------------------------|---------------------------------------------|---------------------------------------------|----------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|-------------------|--------------------|----------------|----------------|----------------|----------------|-----------------------|---------------|---------------|--------------------|----------------------|-----------------------------------------|-----------------|----------------------|---------------------------------------------|
| 6×10 <sup>4</sup> L 6                 | 1.4×10-3L                                      | 2.2×10-3r              |                                             |                                             | 4×10-2L        | 5.7×10 <sup>-5</sup> L 5.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1 1×10-3r              | -                 | 1                  |                |                |                | 5×10-6L 5×     | 3×10-6L 3×            |               |               | 7.                 |                      |                                         | N=10-8          | 8×10-5L 8×1          | 1.1×10-4L 1.1×                              |
| 0×104L                                | 1.4×10 <sup>-3</sup> L                         | 2.2×10-3L              |                                             |                                             | 7~10-T         | 5.7×10 <sup>-5</sup> L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.1×10-3L              |                   |                    | 1              |                |                | 3×10-6L        | 1.57×10-4             | 5×10-6L       |               | -                  |                      |                                         |                 | 8×10-2L 8            | mg/L                                        |
| 7_01×0                                | 1.4×10 <sup>-3</sup> L                         | 2.2×10 <sup>-3</sup> L | 1.4×10-31.                                  | 4×10-5r                                     | 7 0104         | 5.7×10°L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.1×10-3L              | 1.2×10-5L         | 4×10-61.           | 4×10-6L        | 4×10-61        | 19-01~3        | 3×10°L         | 1.25×10 <sup>-4</sup> | 5×10-6L       | 1.2×10-5L     | 0.04               | 3×10-4L              | 8×10-5r                                 | 2010            | T <sub>c</sub> -01×8 | 1.1×10-4L                                   |
| 1 1.10 L                              | 1.4×10 <sup>-3</sup> L                         | 2.2×10 <sup>-3</sup> L | 1.4×10 <sup>-3</sup> L                      | 4×10-5r.                                    | 3 0 0          | 3./×10°L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.1×10 <sup>-3</sup> L | 1.2×10°5L         | 4×10-6L            | 4×10°L         | 4×10-6L        | 5×10-6r        |                | 1.37×10-4             | 5×10-6L       | 1.2×10-5L     | 0.06               | 3×10 <sup>-4</sup> L | 8×10-5L                                 | 8×10-5r         | 7.01.00              | 1.1×10-4L<br>勒斯於瀏到共左四八司                     |
| I/om                                  | mg/L                                           | mg/L                   | mg/L                                        | mg/L                                        | 1/200          | mg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | mg/L                   | mg/L              | mg/L               | mg/L           | mg/L           | mg/L           |                | mg/L                  | mg/L          | mg/L          | mg/L               | mg/L                 | mg/L                                    | I/om            | 18.                  | mg/L<br>给汀苏格林                               |
| 米田                                    | <b>→</b> + + + + + + + + + + + + + + + + + + + | 二甲苯+对二甲苯               | 邻二甲苯                                        | 硝基苯                                         | 米              | Name of the state | 2-录[即]                 | 苯并[a]蒽            | 苯并[a]芘             | 苯并[b]荧蒽        | 苯并[k]荧蒽        | 開              | 神井に い神         | ◆ 十[a,n] 函            | 茚并[1,2,3-cd]芘 | 茶             | 可萃取性石油 (C10-C40)   | 3,3-二氯联苯胺*           | 1,2,4-三氯苯*                              | 三氯苯* 1.2.3-二氯苯* |                      | 一足                                          |

表1(续) 地下水检测结果

(2025) 恒安(水)字第(991)号

| Г    |                                 | 凹                             | _                     | T   | T    | T     | T          | Т   | T  | _              | T        | T    | 1    | Т       | $\top$   | Т      | T    | $\overline{}$ |
|------|---------------------------------|-------------------------------|-----------------------|-----|------|-------|------------|-----|----|----------------|----------|------|------|---------|----------|--------|------|---------------|
| -    | T                               | 松出限                           | Т                     | -   | -    | +     | -          | -   | '  |                |          | '    | 1    | 1       | I.       |        | 1    | 2             |
| GW5  | N: 32.089360°<br>E: 130.6100230 | 2500899D5-001                 | 送<br>送<br>送<br>送<br>送 | 7 6 | 31.5 | 5.1.2 | <b>%</b> H |     | 2  | 310            |          | 000  | 00   | 123     | 0.0003L  | 0.03L  | 0.2  | 0.340         |
| GW4  | N: 32.089590°<br>E: 120.518932° | 2500899D4-001<br>250089D4-002 | 浅黄透明                  | 7.4 | 21.6 | 无     | 无          | 36  | 10 | 204            | 552      | 83   | 54   | 0.0003L | 0.05L    | 3.7    | 1.44 | 0.003L        |
| 监测点位 | 经纬度                             |                               |                       | 无量纲 | သွ   |       | 1          | NTU | 政  | mg/L           | mg/L     | mg/L | mg/L | mg/L    | mg/L     | mg/L   | mg/L | mg/L          |
|      | 2025.07.24                      | 样品编号                          | 样品状态                  | pH值 | 水温   | 臭和味   | 肉眼可见物      | 浊度  | 色度 | 钙、镁总量<br>(总硬度) | 溶解性总固体   | 硫酸盐  | 氣化物  | 挥发酚     | 阴离子表面活性剂 | 高锰酸盐指数 | 剱剱   | 硫化物           |
| 采样   | 日期                              |                               |                       |     |      |       |            |     | 犂  | ポラ             | <u>₩</u> |      |      |         |          |        |      |               |

第12页共18页

 $1.5 \times 10^{-3}$  $1.4 \times 10^{-3}$ 1.48×10-2 1.5×10-3L 2.69×10<sup>-3</sup>  $1.04 \times 10^{-3}$ 0.004L 0.006L 0.004L  $4 \times 10^{-4}$ L 3.5×10<sup>-3</sup>  $5\times10^{-5}L$  $1\times10^{-3}L$ 6.2×10-3 0.286 4×10-5L 0.40 0.587 99.0 0.36 12.8 1.76×10-2  $1.5\times10^{-3}L$ 3.41×10-3  $6.5 \times 10^{-3}$ 5.78×10-3  $4.8 \times 10^{-3}$ 0.004L  $4 \times 10^{-4}$ L 0.632 09.0 D0000 0.004L 0.148 6×10-5 4×10-3 4×10-5L 1.11 0.12 16.5 mg/L 亚硝酸盐氮 硝酸盐氮 总氰化物 四氯化碳 氟化物 碘化物 六价铬 三氯甲烷 轶 锰 特 铝 钠 硒 微 世 需 铜 铅 来 检测结果

151

第 14 页 共 18 页

| 10-3                   | 10-3                   |                        | 201                    | -01        | 5-0        | 5 5       | 0.0                    | 000                    | 0-0      | 0-0                    | 5-0                    | 0-3       | 0-3        | 0-3       | 1-3                    |                        |                      | , ,      | 4        | 4 -                 |
|------------------------|------------------------|------------------------|------------------------|------------|------------|-----------|------------------------|------------------------|----------|------------------------|------------------------|-----------|------------|-----------|------------------------|------------------------|----------------------|----------|----------|---------------------|
| 1.2×10-3               | 1 4×10-3               | 1.7                    | 1.2×10                 | 1.2×10°    | 1.1×10-3   | 1×10-5    | 1.2×10°3               | 5.01×c.1               | 1.1×10-5 | c-01×2.1               | 1.4×10-3               | 1.5×10-3  | 1.2×10-3   | 1.2×10-3  | 1 5×10-3               | 1 1 1                  | 1.4×10               | c-01×1   | 8×10-4   | 8×10-4              |
| 1.2×10-3L              | 1.4×10-3L              | 1.2×10-3r              | 12×10-31               | 11>10-31   | 1.1.410-31 | 1 2×10-3r | 1 5×10-3r              | 11×10-3r               | 1.2×10°L | 1.2×10 L               | 1.4×10.3r              | 1.3×10°L  | 1.2×10-3L  | 1.2×10-3L | 1.5×10 <sup>-3</sup> L | 2 1×10-3               | 2.7×10-3             | 1.4×10-3 | 1.4×10-3 | 8×10 <sup>4</sup> T |
| 1.2×10 <sup>-3</sup> L | 1,4×10 <sup>-3</sup> L | 1.2×10 <sup>-3</sup> L | 1.2×10 <sup>-3</sup> L | 1.1×10³L   | 1×10-3L    | 1.2×10-3L | 1.5×10 <sup>-3</sup> L | 1.1×10 <sup>-3</sup> L | 1.2×10³L | 1.4×10 <sup>-3</sup> L | 1.5×10 <sup>-3</sup> L | 1.2×10-3r | 1 200      | 1.2×10°L  | 1.5×10 <sup>-3</sup> L | 1.4×10 <sup>-3</sup> L | 4.2×10 <sup>-3</sup> | 9.9×10-3 | 5.0×10-3 | T+01×8              |
| mg/L                   | mg/L                   | mg/L                   | mg/L                   | mg/L       | mg/L       | mg/L      | mg/L                   | mg/L                   | mg/L     | mg/L                   | mg/L                   | mg/L      | me/I       | 2 20      | mg/L                   | mg/L                   | mg/L                 | mg/L     | mg/L     | mg/L                |
| 1,1-二氟乙烷               | 1,2-二氯乙烷               | 1,1-二氯乙烯               | 顺-1,2-二氯乙烯             | 反-1,2-二氟乙烯 | 二氯甲烷       | 1,2-二氯丙烷  | 1,1,1,2-四氯乙烷           | 1,1,2,2-四氯乙烷           | 四氯乙烯     | 1,1,1-三氟乙烷             | 1,1,2-三氯乙烷             | 三氟乙烯      | 1.2.3-三氯丙烷 | T I       | 製乙落                    | 茶                      | 氣苯                   | 1,2-二氯苯  | 1,4-二氯苯  | 乙苯                  |
|                        |                        |                        |                        |            |            |           |                        | 4                      | 夏夏       | 由录                     | <b>*</b>               |           |            | 1         |                        |                        |                      |          |          |                     |

| 日本   日本   mg/L   1,4×10 <sup>3</sup> L   1,1×10 <sup>3</sup> L | mg/L         1.4×10 <sup>3</sup> L         1.4×10 <sup>3</sup> L         1.4×10 <sup>3</sup> L           mg/L         4×10 <sup>3</sup> L         4×10 <sup>3</sup> L         4×10 <sup>3</sup> L         4×10 <sup>3</sup> L           mg/L         4×10 <sup>3</sup> L         4×10 <sup>3</sup> L         4×10 <sup>3</sup> L         1.0×10 <sup>4</sup> 2.8×10 <sup>3</sup> L           mg/L         1.1×10 <sup>3</sup> L         2.8×10 <sup>3</sup> L         1.0×10 <sup>4</sup> L         1.1×10 <sup>4</sup> L                                                                                             | + |                        |                        |          |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|------------------------|------------------------|----------|
| mg/L         2.2×10 <sup>3</sup> L         2.2×10 <sup>3</sup> L           mg/L         1.4×10 <sup>3</sup> L         1.4×10 <sup>3</sup> L           mg/L         4×10 <sup>5</sup> L         4×10 <sup>5</sup> L           mg/L         5.7×10 <sup>3</sup> L         1.0×10 <sup>4</sup> mg/L         1.1×10 <sup>3</sup> L         2.8×10 <sup>3</sup> mg/L         4×10 <sup>6</sup> L         4×10 <sup>6</sup> L           mg/L         4×10 <sup>6</sup> L         4×10 <sup>6</sup> L           mg/L         4×10 <sup>6</sup> L         4×10 <sup>6</sup> L           mg/L         3×10 <sup>6</sup> L         5×10 <sup>6</sup> L           mg/L         3×10 <sup>6</sup> L         5×10 <sup>6</sup> L           mg/L         3×10 <sup>6</sup> L         3×10 <sup>6</sup> L           mg/L         3×10 <sup>4</sup> L         3×10 <sup>4</sup> L           mg/L         8×10 <sup>5</sup> L         8×10 <sup>5</sup> L           mg/L         8×10 <sup>5</sup> L         8×10 <sup>5</sup> L           mg/L         8×10 <sup>5</sup> L         8×10 <sup>5</sup> L           mg/L         1.1×10 <sup>4</sup> L         1.1×10 <sup>4</sup> L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 両二甲苯+対二甲苯   mg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |   | 1.4×10 <sup>-3</sup> L | 1 4×10-31              | 1 4410   |
| mg/L         1.4×10-³L         1.4×10-³L           mg/L         4×10-²L         4×10-²L           mg/L         1.1×10-³L         2.8×10-³           mg/L         1.2×10-²L         2.8×10-³           mg/L         4×10-²L         4×10-²L           mg/L         4×10-²L         4×10-²L           mg/L         4×10-²L         4×10-²L           mg/L         4×10-²L         4×10-²L           mg/L         3×10-²L         5×10-²L           mg/L         3×10-²L         3×10-²L           mg/L         3×10-²L         3×10-²L           mg/L         3×10-²L         3×10-²L           mg/L         8×10-²L         3×10-²L           mg/L         8×10-²L         8×10-²L           mg/L         8×10-²L         1.1×10-²L           mg/L         1.1×10-²L         1.1×10-²L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 4   4   4   4   4   4   4   4   4   4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |   | 2.2×10 <sup>-3</sup> L | 1,01,01                | 1.4×1    |
| mg/L         4×10 <sup>2</sup> L         4×10 <sup>2</sup> L           mg/L         5.7×10 <sup>2</sup> L         1.0×10 <sup>4</sup> mg/L         1.1×10 <sup>2</sup> L         2.8×10 <sup>3</sup> mg/L         1.2×10 <sup>2</sup> L         2.8×10 <sup>3</sup> mg/L         4×10 <sup>6</sup> L         4×10 <sup>6</sup> L           mg/L         4×10 <sup>6</sup> L         4×10 <sup>6</sup> L           mg/L         5×10 <sup>6</sup> L         5×10 <sup>6</sup> L           mg/L         3×10 <sup>4</sup> L         5×10 <sup>6</sup> L           mg/L         3×10 <sup>4</sup> L         3×10 <sup>4</sup> L           mg/L         8×10 <sup>5</sup> L         8×10 <sup>5</sup> L           mg/L         8×10 <sup>5</sup> L         8×10 <sup>5</sup> L           mg/L         8×10 <sup>5</sup> L         8×10 <sup>5</sup> L           mg/L         1.1×10 <sup>4</sup> L         1.1×10 <sup>4</sup> L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 産業本         mgL         4×10 <sup>3</sup> L         1,4×10 <sup>3</sup> L         4×10 <sup>3</sup> L         1,1×10 <sup>3</sup> L         1,1×10 <sup>3</sup> L         1,1×10 <sup>3</sup> L         1,2×10 <sup>3</sup> L         1,1×10 <sup>3</sup> L         1,1×10 <sup>3</sup> L         4×10 <sup>3</sup> L |   | 1.4×10³F               | 7.01\7.7.7             | 2.2×1    |
| mg/L         5.7×10°L         4×10°L           mg/L         1.1×10°L         1.0×10°           mg/L         1.2×10°L         2.8×10°           mg/L         4×10°L         4×10°L           mg/L         4×10°L         4×10°L           mg/L         4×10°L         4×10°L           mg/L         5×10°L         4×10°L           mg/L         5×10°L         5×10°L           mg/L         5×10°L         5×10°L           mg/L         3×10°L         5×10°L           mg/L         3×10°L         3×10°L           mg/L         8×10°L         8×10°L           mg/L         8×10°L         8×10°L           mg/L         8×10°L         8×10°L           mg/L         1.1×10°L         1.1×10°L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 本記                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |   | 300                    | 1.4×10 <sup>-3</sup> L | 1.4×10-3 |
| mg/L         5.7×10-5L         1.0×10-4           mg/L         1.1×10-3L         2.8×10-3           mg/L         4×10-6L         4×10-6L           mg/L         4×10-6L         4×10-6L           mg/L         4×10-6L         4×10-6L           mg/L         3×10-6L         5×10-6L           mg/L         3×10-6L         5×10-6L           mg/L         1.2×10-3L         1.2×10-6L           mg/L         3×10-6L         5×10-6L           mg/L         3×10-6L         3×10-6L           mg/L         8×10-3L         8×10-3L           mg/L         8×10-3L         8×10-3L           mg/L         8×10-3L         8×10-3L           mg/L         1.1×10-4L         1.1×10-4L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 本版 mg/L         5.7×10°L         1.0×10°L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |   |                        |                        |          |

第 15 页 共 18 页

#### 表 2 检测依据及相关信息

| 类别  | 检测项目             | 检测依据                                                                  | 检出限        | 检测仪器            | 仪器型号      | 仪器编号                       |
|-----|------------------|-----------------------------------------------------------------------|------------|-----------------|-----------|----------------------------|
|     | -                | 《地下水环境监测技术规范》<br>HJ 164-2020                                          | -          | -               | -         | -                          |
|     | -                | 《地块土壤和地下水中挥发性有机等<br>采样技术导则》HJ 1019-2019                               | 勿 -        | -               | -         | -                          |
|     | pH 值             | 《水质 pH 值的测定 电极法》<br>HJ 1147-2020                                      | -          | 便携式<br>pH/ORP 计 | GТРН30    | HAYQ-123-0                 |
|     |                  |                                                                       |            |                 | TS-100    | HAYQ-123-04                |
|     | 水温               | 《水质 水温的测定 温度计或颠倒温度计测定法》GB/T 13195-1991<br>只用: 3.1 水温计法                | -          | 水温计             | -         | HAYQ-136-03<br>HAYQ-136-04 |
|     | 臭和味              | 《生活饮用水标准检验方法 第4部分: 感官性状和物理指标》<br>GB/T 5750.4-2023<br>只用: 6.1 嗅气和尝味法   | -          | -               | -         | -                          |
|     | 肉眼可见物            | 《生活饮用水标准检验方法 第4部<br>分:感官性状和物理指标》<br>GB/T 5750.4-2023<br>只用:7.1直接观察法   | -          | -               | -         | -                          |
| 地下水 | 浊度               | 《水质 浊度的测定 浊度计法》<br>HJ 1075-2019                                       | 0.3NTU     | 便携式浊度计          | WZB-171   | HAYQ-162-03<br>HAYQ-162-04 |
| 也下水 | 色度               | 《生活饮用水标准检验方法 第4部分: 感官性状和物理指标》<br>GB/T 5750.4-2023<br>只用: 4.1 铂-钴标准比色法 | 5度         | -               | -         | -                          |
|     | 六价铬              | 《水质 六价铬的测定 二苯碳酰二肼<br>分光光度法》GB/T 7467-1987                             | 0.004mg/L  | 可见分光 光度计        | T6 新悦     | HAYQ-112-03                |
|     | 钙、镁总量<br>(总硬度)   | 《水质 钙、镁总量的测定 EDTA 滴<br>定法》GB/T 7477-1987                              | 5.0mg/L    | -               | -         | -                          |
|     | 溶解性总固体           | 《生活饮用水标准检验方法 第4部分:感官性状和物理指标》                                          |            | 分析天平            | ATY224    | HAYQ-022-01                |
|     | THAT ILLES EN PA | GB/T5750.4-2023<br>只用: 11.1 称量法                                       | 4mg/L      | 电热恒温鼓<br>风干燥箱   | DHG-9070A | HAYQ-027-03                |
|     | 硫酸盐              | 《水质 硫酸盐的测定 铬酸钡分光光<br>度法(试行)》HJ/T 342-2007                             | 2mg/L      | 可见分光<br>光度计     | T6 新悦     | HAYQ-112-03                |
|     | 氯化物              | 《水质 氯化物的测定 硝酸银滴定<br>法》GB/T 11896-1989                                 | 2mg/L      |                 | -         | -                          |
|     | 挥发酚              | 《水质 挥发酚的测定 4-氨基安替比<br>林分光光度法》HJ 503-2009                              | 0.0003mg/L | 可见分光 光度计        | T6 新悦     | HAYQ-112-02                |

第 16 页 共 18 页

|     | 阴离子表面<br>活性剂 | 《水质 阴离子表面活性剂的测定<br>甲蓝分光光度法》GB/T 7494-1987                                                                                                                                          | 0.05mg/L                  | 紫外可见<br>分光光度计         | T6 新世纪         | HAYQ-031-02 |
|-----|--------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|-----------------------|----------------|-------------|
|     | 高锰酸盐指数       | 《水质 高锰酸盐指数的测定》<br>GB/T 11892-1989                                                                                                                                                  | 0.5mg/L                   | -                     | -              |             |
|     | 氨氮           | 《水质 氨氮的测定 纳氏试剂分光<br>度法》HJ 535-2009                                                                                                                                                 | 光 0.025mg/L               | 紫外可见<br>分光光度计         | 7598           | HAYQ-031-01 |
|     | 硫化物          | 《水质 硫化物的测定 亚甲基蓝分为<br>光度法》HJ 1226-2021                                                                                                                                              | 0.003mg/L                 | 紫外可见<br>分光光度计         | 7598           | HAYQ-031-01 |
|     | 亚硝酸盐氮        | 《水质 亚硝酸盐氮的测定 分光光度<br>法》GB/T 7493-1987                                                                                                                                              | 0.003mg/L                 | 紫外可见<br>分光光度计         | T6 新世纪         | HAYQ-031-03 |
|     | 硝酸盐氮         | 《水质 无机阴离子(F·、Cl·、NO <sub>2</sub> ·、<br>Br·、NO <sub>3</sub> ·、PO <sub>4</sub> <sup>3·</sup> 、SO <sub>3</sub> <sup>2·</sup> 、SO <sub>4</sub> <sup>2·</sup> )的测<br>定 离子色谱法》HJ 84-2016 |                           | 离子色谱仪                 | CIC-100        | HAYQ-045-01 |
|     | 总氰化物         | 《水质 氰化物的测定 容量法和分类<br>光度法》HJ 484-2009<br>只用:异烟酸-吡唑啉酮分光光度法                                                                                                                           | 0.004mg/I                 | 紫外可见<br>分光光度计         | T6 新世纪         | HAYQ-031-03 |
|     | 氟化物          | 《水质 氟化物的测定 离子选择电极<br>法》GB/T 7484-1987                                                                                                                                              | 0.05mg/L                  | 酸度计<br>(pH 计)         | PHS-25         | HAYQ-034-01 |
|     | 碘化物          | 《地下水质分析方法 第 56 部分: 砂<br>化物的测定 淀粉分光光度法》<br>DZ/T 0064.56-2021                                                                                                                        | 0.006mg/L                 | 可见分光<br>光度计           | T6 新悦          | HAYQ-112-03 |
| 地下水 | 铁            | 《水质 32 种金属元素的测定 电感<br>耦合等离子体发射光谱法》<br>HJ 776-2015                                                                                                                                  | 0.02mg/L                  | 电感耦合等<br>离子体发射<br>光谱仪 | Optima8000     | HAYQ-113-01 |
|     | 锰            | 《水质 32 种金属元素的测定 电感<br>耦合等离子体发射光谱法》<br>HJ 776-2015                                                                                                                                  | 0.004mg/L                 | 电感耦合等 离子体发射 光谱仪       | Optima8000     | HAYQ-113-01 |
|     | 铜            | 《水质 65 种元素的测定 电感耦合<br>等离子体质谱法》HJ 700-2014                                                                                                                                          | 8×10 <sup>-5</sup> mg/L   | 电感耦合等<br>离子体质谱<br>仪   | NexLON<br>1000 | HAYQ-146-01 |
|     | 锌            | 《水质 65 种元素的测定 电感耦合<br>等离子体质谱法》HJ 700-2014                                                                                                                                          | 6.7×10 <sup>-4</sup> mg/L | 电感耦合等<br>离子体质谱<br>仪   | NexLON<br>1000 | HAYQ-146-01 |
|     | 铝            | 《水质 32 种金属元素的测定 电感<br>耦合等离子体发射光谱法》<br>HJ 776-2015                                                                                                                                  | 0.07mg/L                  | 电感耦合等<br>离子体发射<br>光谱仪 | Optima8000     | HAYQ-113-01 |
|     | 钠            | 《水质 32 种金属元素的测定 电感<br>耦合等离子体发射光谱法》<br>HJ 776-2015                                                                                                                                  | 0.12mg/L                  | 电感耦合等                 | Optima8000     | HAYQ-113-01 |
|     | 汞            | 《水质 汞、砷、硒、铋和锑的测定 原子荧光法》HJ 694-2014                                                                                                                                                 | 4×10-5mg/L                | 原子荧光<br>光度计           | AFS-8520       | HAYQ-071-02 |
|     | 砷            | 《水质 汞、砷、硒、铋和锑的测定 原子荧光法》HJ 694-2014                                                                                                                                                 | 3×10 <sup>-4</sup> mg/L   | 原子荧光<br>光度计           | AFS-8520       | HAYQ-071-02 |
|     | 硒            | 《水质 汞、砷、硒、铋和锑的测定 原子荧光法》HJ 694-2014                                                                                                                                                 | 4×10 <sup>-4</sup> mg/L   | 原子荧光<br>光度计           | AFS-8520       | HAYQ-071-02 |

第 17 页 共 18 页

|     | 镉                                               | 《水质 65 种元素的测定 电感耦合<br>等离子体质谱法》HJ 700-2014                               | 5×10-5mg/L                | 电感耦合等<br>离子体质谱<br>仪   | NexLON<br>1000       | HAYQ-146-01 |
|-----|-------------------------------------------------|-------------------------------------------------------------------------|---------------------------|-----------------------|----------------------|-------------|
|     | 铅                                               | 《水和废水监测分析方法》(第四版增补版)国家环境保护总局(2002年)<br>只用: 3.4.16.5 石墨炉原子吸收法            |                           | 石墨炉火焰<br>一体机          | PinAAcle<br>900T     | HAYQ-145-01 |
|     | 镍                                               | 《水质 65 种元素的测定 电感耦合<br>等离子体质谱法》HJ 700-2014                               | 6×10-5mg/L                | 电感耦合等<br>离子体质谱<br>仪   | NexLON<br>1000       | HAYQ-146-01 |
|     | 挥发性有机物                                          | 《水质 挥发性有机物的测定 吹扫捕<br>集/气相色谱-质谱法》HJ 639-2012                             | -                         | 气相质谱<br>联用仪           | GCMS-QP<br>2010SE    | HAYQ-087-01 |
|     | 多环芳烃                                            | 《水质 多环芳烃的测定 液液萃取和<br>固相萃取高效液相色谱法》<br>HJ 478-2009 只用: 液液萃取紫外检测<br>器法     |                           | 液相色谱仪                 | SPD-20A              | HAYQ-178-01 |
|     | 硝基苯                                             | 《水质 硝基苯类化合物的测定气相<br>色谱-质谱法》HJ 716-2014                                  | -                         | 气相质谱<br>联用仪           | ISQ7000              | HAYQ-087-02 |
| 地下水 | 苯胺                                              | 《水质 苯胺类化合物的测定 气相色谱-质谱法》HJ 822-2017                                      | -                         | 气相质谱<br>联用仪           | ISQ7000              | HAYQ-087-02 |
|     | 2-氯酚                                            | 《水质 酚类化合物的测定 液液萃取                                                       |                           | 气相色谱仪                 | 7890B                | HAYQ-074-01 |
|     | 2-衆国                                            | /气相色谱法》HJ 676-2013                                                      | -                         | 【相巴信仪                 | 8860<br>(G2790A)     | HAYQ-074-02 |
|     | 可萃取性石油<br>烃 (C <sub>10</sub> -C <sub>40</sub> ) | 《水质 可萃取性石油烃(C <sub>10</sub> -C <sub>40</sub> )的<br>测定 气相色谱法》HJ 894-2017 | 0.01mg/L                  | 气相色谱仪                 | GC-2030              | HAYQ-157-01 |
|     | 1,2,4-三氯苯                                       | 《水质 氯苯类化合物的测定气相色谱法》HJ 621-2011                                          | 8×10 <sup>-5</sup> mg/L   | 气相色谱仪                 | Agilent<br>7890B     | GLLS-JC-110 |
|     | 1,2,3-三氯苯                                       | 《水质 氯苯类化合物的测定气相色谱法》HJ 621-2011                                          | 8×10-5mg/L                | 气相色谱仪                 | Agilent<br>7890B     | GLLS-JC-110 |
|     | 1,3,5-三氯苯                                       | 《水质 氯苯类化合物的测定气相色谱法》HJ 621-2011                                          | 1.1×10 <sup>-4</sup> mg/L | 气相色谱仪                 | Agilent<br>7890B     | GLLS-JC-110 |
|     | 3,3′-二氯联苯<br>胺                                  | 《水质 17 种苯胺类化合物的测定<br>液相色谱-三重四级杆质谱法》<br>HJ1048-2019                      | 3×10 <sup>-4</sup> mg/L   | 液相色谱-三<br>重四级杆质<br>谱仪 | Agilent<br>1290-6740 | GLLS-JC-418 |

\*\*\*报告结束\*\*\*

第 18 页 共 18 页

# 测 报 告

## **TEST REPORT**

(2025) 恒安(水)字第(993)号



委托检测 检测类别: 地下水检测 项目名称: 江苏隆昌化工有限公司 委托单位:

江苏恒安检测技术有限公司 JiangSu HengAn Detection Technology Co., Ltd.

二〇二五年九月

第1页共7页

#### 声明

- 一、用户对本报告若有异议,可在收到本报告后7日内,向本公司提出书面申诉,超过申诉期限,概不受理。
- 二、本报告无编制、复核、审核及授权签字人签名无效,未加盖检验检测 专用章、骑缝章无效。
- 三、未经许可,不得复制本报告;任何对本报告的涂改、伪造、变更及不 当使用均无效,其责任人将承担相关法律及经济责任,本公司保留对上述行为 追究法律责任的权利。

四、本报告检测结果仅对被测地点、对象及当时情况有效;由其他单位或 个人采集送检的样品,本公司仅对送检样品的检测结果负责,委托方对送检样 品及其相关信息的真实性负责。

五、不包含 CMA 资质认定标志的报告仅用于科研、教学或企业内部质量控制活动使用,检测数据和结果仅供参考用,不具有社会证明作用。

六、本公司对本报告的检测数据保守秘密。

七、未经本公司书面同意,该检验报告不得用于商业性宣传。

地 址: 南通市崇川区观音山街道胜利路 168 号 2 幢 4 层 5 层

邮政编码: 226000

电 话: 0513-68252917

传 真: 0513-68252966

电子邮件: jshajcjs@163.com

第2页共7页

#### 检测报告

|      |                           | 检测   | 刊报 告                      |         |                           |
|------|---------------------------|------|---------------------------|---------|---------------------------|
| 委托单位 |                           | 江    | 苏隆昌化工有限                   | 公司      |                           |
| 通讯地址 |                           | 如皋   | 中长江镇钱江路                   | 子1号     |                           |
| 联系人  | 崔                         | 总    | 联系电话                      | 15706   | 271352                    |
| 采样日期 | 2025.07.21、<br>2025.07.24 | 接样日期 | 2025.07.21、<br>2025.07.24 | 分析日期    | 2025.07.21~<br>2025.08.12 |
| 检测目的 | 受江苏隆管理提供依据。               |      | 司委托,对其地均                  | 央地下水进行核 | ·                         |
| 检测内容 | 地下水: 氯甲烷                  | 完    |                           |         |                           |
| 检测依据 | 见表 2                      |      |                           |         |                           |
|      |                           |      |                           |         |                           |

第3页共7页

(2025) 恒安(水)字第(993)号

表 1 地下水检测结果

|     |            |      |                                 | 大, 的一个国数出来                                                    | *                               |                       |                        |
|-----|------------|------|---------------------------------|---------------------------------------------------------------|---------------------------------|-----------------------|------------------------|
| 米样  | 2025 07 21 | 监测点位 | GW1                             | GW2                                                           | GW3                             | GW6                   | 6M9                    |
| 田湖  | 17.10.6757 | 经纬度  | N: 32.090521°<br>E: 120.518662° | N: 32.090495°<br>E: 120.519523°                               | N: 32.089970°<br>E: 120.518388° | N: 32.089206°         | N: 32.089639°          |
| 極   | 样品编号       |      | 2500899D1-001                   | 2500899D2-001<br>2500899D2-002                                | 2500899D3-001                   | 2500899D6-001         | 2500899D9-001          |
| 用狀源 | 样品状态       |      | 浅黄透明                            | 无色透明                                                          | 浅黄透明                            | 浅黄透明                  | 浅黄透明                   |
| K   | 氯甲烷        | mg/L | 1.3×10 <sup>-4</sup> L          | 1.3×10 <sup>-4</sup> L                                        | 1.3×10 <sup>-4</sup> L          | 1.3×10 <sup>4</sup> L | 1.3×10 <sup>-4</sup> L |
|     |            |      |                                 | 以下空白                                                          |                                 |                       |                        |
|     |            |      |                                 |                                                               |                                 |                       |                        |
|     |            |      |                                 |                                                               |                                 |                       |                        |
|     |            |      |                                 |                                                               |                                 |                       |                        |
|     |            |      |                                 |                                                               |                                 |                       |                        |
|     |            |      |                                 |                                                               |                                 |                       |                        |
|     |            |      |                                 |                                                               |                                 |                       |                        |
|     |            |      |                                 |                                                               |                                 |                       |                        |
| 洪   |            |      | 25008991                        | 2500899D2-002 是 2500899D2-001 的现场平行样<br>未检出以"检出阻士" 事示 检中阻回事 2 | 01 的现场平行样                       |                       |                        |
|     |            |      |                                 | TO CONTRACT NAME OF                                           | . HPK 72-4X 20                  |                       |                        |

第4页共7页

(2025) 恒安(水)字第(993)号

表1(续) 地下水检测结果

|     |            |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 大田 (本語) (大田 ) (大 | X H X                           |                                 |                 |
|-----|------------|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|---------------------------------|-----------------|
| 来样  | 2025 07 21 | 监测点位 | GW7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | GW8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | GW10                            | GW11                            | GW12            |
| 強   | 17:10:0707 | 经纬度  | N: 32.090100°<br>E: 120.519908°                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | N: 32.088789°<br>E: 120.519930°                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | N: 32.517776°<br>E: 120.502133° | N: 32.089705°<br>F. 120.510000° | N: 32.090653°   |
| 全   | 样品编号       |      | 2500899D7-001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2500899D8-001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2500899D10-001                  | 2500899D11-001                  | 2500800013 001  |
| ポ 湯 | 样品状态       |      | 无色透明                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 无色透明                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 浅灰不透明                           | 浅灰不透明                           | 100-21066900027 |
| EK  | 氣甲烷        | mg/L | 1.3×10 <sup>-4</sup> L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.3×10-4L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1.3×10 <sup>-4</sup> L          | 1.3×10 <sup>-4</sup> L          | 1.3×10-4L       |
|     |            |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 以下空白                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                 |                                 |                 |
|     |            |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                 |                                 |                 |
|     |            |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                 |                                 |                 |
|     |            |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                 |                                 |                 |
|     |            |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                 |                                 |                 |
|     |            |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                 |                                 |                 |
|     |            |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                 |                                 |                 |
|     |            |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                 |                                 |                 |
| 洪   |            |      | 1 2 2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 未检讯以"检讯阻士"事品 经中国日本。                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 7 年 四 盟 中 3                     |                                 |                 |
| -   |            |      | Property and a series of the s | にいなっというに                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2. 山限光衣 Z。                      |                                 |                 |

第5页共7页

|   |            |      | N/ HA PO THE AT  |                                 |
|---|------------|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|
|   | 20 20 3000 | 监测点位 | GW4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | GW5                             |
|   | 2023.07.24 | 经纬度  | N: 32.089590°<br>E: 120.518932°                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | N: 32.089360°<br>F: 120.518862° |
|   | 样品编号       |      | 2500899D4-001<br>2500899D4-002                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2500899D5-001                   |
|   | 样品状态       |      | 浅黄透明                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 浅黄透明                            |
|   | 氯甲烷        | mg/L | 1,3×10 <sup>4</sup> L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.3×10 <sup>-4</sup> L          |
|   |            |      | 以下空自                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                 |
|   |            |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                 |
|   |            |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                 |
|   |            |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                 |
|   |            |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                 |
|   |            |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                 |
|   |            |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                 |
|   |            |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                 |
|   |            |      | 2500899D4-002 是 2500899D4-001 的现场平行样;<br>未检出以"检出限七"表示、检出即见表 2.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 行样;                             |
| 4 |            |      | Add and death from some of the control of the contr |                                 |

第6页共7页



#### 表 2 检测依据及相关信息

|         |      | E - E - E - E - E - E - E - E - E -       | 人们人们心                     |             |                   |             |
|---------|------|-------------------------------------------|---------------------------|-------------|-------------------|-------------|
| 类别      | 检测项目 | 检测依据                                      | 检出限                       | 检测仪器        | 仪器型号              | 仪器编号        |
| 地下水一    | -    | 《地下水环境监测技术规范》<br>HJ 164-2020              | -                         | 77 <b>=</b> | -                 | -           |
| 7E   7K | 氯甲烷  | 《生活饮用水标准检验方法 第8部分: 有机物指标》GB/T 5750.8-2023 | 1.3×10 <sup>-4</sup> mg/L | 气相质谱<br>联用仪 | GCMS-QP<br>2010SE | HAYQ-087-01 |

\*\*\*报告结束\*\*\*

第7页共7页

# 检测报告 TEST REPORT

(2025) 恒安(水)字第(994)号



检测类别:委托检测项目名称:地下水检测委托单位:江苏隆昌化工有限公司

江苏恒安检测技术有限公司
JiangSu HengAn Detection Technology Co., Ltd.
二〇二五年九月

第1页共6页

#### 声明

- 一、用户对本报告若有异议,可在收到本报告后7日内,向本公司提出书面申诉,超过申诉期限,概不受理。
- 二、本报告无编制、复核、审核及授权签字人签名无效,未加盖检验检测 专用章、骑缝章无效。
- 三、未经许可,不得复制本报告,任何对本报告的涂改、伪造、变更及不 当使用均无效,其责任人将承担相关法律及经济责任,本公司保留对上述行为 追究法律责任的权利。

四、本报告检测结果仅对被测地点、对象及当时情况有效;由其他单位或 个人采集送检的样品,本公司仅对送检样品的检测结果负责,委托方对送检样 品及其相关信息的真实性负责。

五、不包含 CMA 资质认定标志的报告仅用于科研、教学或企业内部质量控制活动使用,检测数据和结果仅供参考用,不具有社会证明作用。

六、本公司对本报告的检测数据保守秘密。

七、未经本公司书面同意,该检验报告不得用于商业性宣传。

地 址: 南通市崇川区观音山街道胜利路 168 号 2 幢 4 层 5 层

邮政编码: 226000

电 话: 0513-68252917

传 真: 0513-68252966

电子邮件: jshajcjs@163.com

第2页共6页

#### 检测报告

| 委托单位 |                          | 江方       | 苏隆昌化工有限2                  | 公司        |                           |
|------|--------------------------|----------|---------------------------|-----------|---------------------------|
| 通讯地址 |                          | 如皋       | 市长江镇钱江路                   | 1号        |                           |
| 联系人  | 崔                        | 总        | 联系电话                      | 15706     | 271352                    |
| 采样日期 | 2025.07.21<br>2025.07.24 | 接样日期     | 2025.07.22、<br>2025.07.25 | 分析日期      | 2025.07.22~<br>2025.09.11 |
| 检测目的 | 受江苏隆管理提供依据               |          | 司委托,对其地均                  | 央地下水进行核   | <b>金测,为其环</b> 均           |
|      |                          |          |                           |           |                           |
| 检测内容 | 地下水: 3,4-二<br>苯胺         | 二氯硝基苯、2, | 4-二氯苯乙酮、                  | 2,5-二氯硝基苯 | 长、邻硝基对氰                   |

第3页共6页



(2025) 恒安(水)字第(994)号

JSHA-TR-32-01(2023)

N: 32.089639° E: 120.518899° 2500899D9-001 加"\*"的检测因子分包给江苏格林勒斯检测科技有限公司,该部分检测结果引用江苏格林勒斯检测科技有限公司报告编号 GE2504172802A(定性)。 浅黄透明 定性未检出 定性未检出 定性未检出 定性未检出 E: 120.519451° N: 32.089206° 2500899D6-001 定性未检出 浅黄透明 定性未检出 定性未检出 定性未检出 E: 120.518388° N: 32.089970° 2500899D3-001 浅黄透明 定性未检出 定性未检出 定性未检出 定性未检出 2500899D2-002 是 2500899D2-001 的现场平行样; GW3 表 1 地下水检测结果 N: 32.090495° E: 120.519523° 2500899D2-001 2500899D2-002 定性未检出 定性未检出 以下空白 定性未检出 定性未检出 无色透明 GW2 N: 32.090521° E: 120.518662° 2500899D1-001 定性未检出 定性未检出 定性未检出 定性未检出 浅黄透明 GW1 监测点位 经纬度 1 样品编号 样品状态 3,4-二氯硝基苯\* 2,5-二氯硝基苯\* 2,4-二氯苯乙酮\* 邻硝基对氯苯胺\* 2025.07.21 采样日期 注 強測岩果 每

第4页共6页



(2025) 恒安(水)字第(994)号

采样口期

JSHA-TR-32-01(2023)

E: 120.519847° 2500899D12-001 N: 32.090653° 加\*\*"的检测因子分包给江苏格林勒斯检测科技有限公司,该部分检测结果引用江苏格林勒斯检测科技有限公司报告编号 GE2504172802A(定性)。 无色透明 定性未检出 定性未检出 定性未检出 定性未检出 GW12 2500899D11-001 E: 120.519999° N: 32.089705° 浅灰不透明 定性未检出 定性未检出 定性未检出 定性未检出 N: 32.517776° E: 120.502133° 2500899D10-001 浅灰不透明 定性未检出 定性未检出 定性未检出 定性未检出 GW10 地下水检测结果 N: 32.088789° E: 120.519930° 2500899D8-001 定性未检出 定性未检出 无色透明 定性未检出 定性未检出 以下空白 GW8 表 1 (续) N: 32.090100° E: 120.519908° 2500899D7-001 定性未检出 定性未检出 定性未检出 无色透明 定性未检出 监测点位 经纬度 1 样品编号 样品状态 3,4-二氯硝基苯\* 2,5-二氯硝基苯\* 邻硝基对氯苯胺\* 2,4-二氯苯乙酮\* 2025.07.21

第5页共6页

辻

每



检测结果

(2025) 恒安(水)字第(994)号

JSHA-TR-32-01(2023)

表1(续) 地下水检测结果

| 安林口苗  | NC 70 3000            | 监测点位                | GW4                                                                                                             | GW5                              |  |
|-------|-----------------------|---------------------|-----------------------------------------------------------------------------------------------------------------|----------------------------------|--|
|       | 47.10.5707            | 经纬度                 | N: 32.089590°<br>E: 120.518932°                                                                                 | N: 32.089360°<br>F: 170.518867°  |  |
|       | 样品编号                  |                     | 2500899D4-001<br>2500899D4-002                                                                                  | 2500899D5-001                    |  |
|       | 样品状态                  |                     | 浅黄透明                                                                                                            | 浅黄透明                             |  |
| 極 裏 : | 3,4-二氯硝基苯*            | 1                   | 定性未检出                                                                                                           | 定性未检出                            |  |
| 结 果   | 2,4-二氯苯乙酮*            |                     | 定性未检出                                                                                                           | 定性未检出                            |  |
|       | 2,5-二氯硝基苯*            | 1                   | 定性未检出                                                                                                           | 定性未检出                            |  |
|       | 邻硝基对氯苯胺*              |                     | 定性未检出                                                                                                           | 定性未检出                            |  |
|       |                       |                     | 以下空白                                                                                                            |                                  |  |
|       |                       |                     |                                                                                                                 |                                  |  |
|       |                       |                     |                                                                                                                 |                                  |  |
|       |                       |                     |                                                                                                                 |                                  |  |
| 各     | 2500899D4-002 是 25008 | 199D4-001 的<br>用江苏林 | 2500899D4-002 是 2500899D4-001 的现场平行样;加"**"的检测因子分包给江苏格林勒斯检测科技有限公司,该部分检测结果引用江苏格林勒斯检测科技有限公司报告编号 GF3x04173803 A/完基: | 勒斯检测科技有限公司,该部分检测结果引<br>803.47字址: |  |
|       |                       |                     |                                                                                                                 |                                  |  |

第6页共6页